

Cabramatta East Planning Proposal

Traffic & Transport Assessment

July 2017

Prepared for

Moon Investments Pty Ltd

Prepare by

ARC Traffic + Transport

Anton Reisch Consulting Pty Ltd 19 Canoon Road Turramurra NSW 2074 Mob 0427 995160 <u>antonreisch@optusnet.com.au</u> ACN: 150 259 493

<u>Contents</u>

page

	Exec	utive Summary	i
	Intro	duction	1
1	Stud	y Area	2
	1.1	Site Location	2
	1.2	Study Area Precincts	2
	1.3	Zoning	4
	1.4	Existing Landuses	5
2	Stud	y Area Travel Characteristics	7
	2.1	Residential Travel Characteristics	7
	2.2	Employee Travel Characteristics	9
	2.3	Urban Living Index	10
	2.4	Trip Generation	11
	2.5	Trip Distribution	15
	2.6	Trip Assignment	15
3	Publi	ic & Active Transport	20
	3.1	Rail	20
	3.2	Bus Services	23
	3.3	Walking & Cycling	25
4	Road	l Network	29
	4.1	Road Classification	29
	4.2	Key Roads	29
	4.3	Key Intersections	31
	4.4	Existing Traffic Flows	32
	4.5	Future Traffic Flows	36
	4.6	Intersection Operations	39
5	Plan	ning Proposal & Study Area Precincts Uplift	43
	5.1	Study Area Precincts Uplift	43
	5.2	Access	44
	5.3	Trip Generation	46
	5.4	Trip Distribution	52
	5.5	Trip Assignment	52

5.6	Future Total Trips	57
5.7	Future Intersection Operations	62
5.8	Parking	65
Conc	lusions	68
6.1	Public and Active Transport	68
6.2	Future Intersection Operations	68
6.3	Intersection Upgrades	69
6.4	Parking	70

Appendix A Traffic Surveys (Electronic Format)

6

- Appendix B1 SIDRA Reports Major Intersections
- Appendix B2 SIDRA Reports Minor Intersections

Executive Summary

Moon Investments Pty Ltd has commissioned a Planning Proposal (the Proposal) to support the redevelopment of an existing mixed-use parcel of land immediately east of Cabramatta Railway Station, bounded by Fisher Street to the north; existing residential dwellings, a car park and commercial development to the east; Cabramatta Road East to the south; and Broomfield Street to the west (the Site). The Proposal would specifically provide for amendments to existing height and Floor Space Ratios (FSRs) as provided in the <u>Fairfield Local Environmental Plan 2013</u> (LEP 2013).

Further to detailed discussions with Fairfield City Council (Council) and the Roads & Maritime Service (RMS), this traffic assessment accompanying the Proposal also examines the potential for 'uplift' in areas immediately surrounding the Site as identified in previous Council strategies. These areas (the Study Area Precincts) include existing mixed-use sites immediately east and south of the Site, which along with the Site comprise part of the Cabramatta Town Centre Precinct 4 (CTCP4) as identified in the <u>Cabramatta Town Centre Development Control Plan 5/2000 (CTC DCP</u>); as well as adjacent low density residential areas on the eastern side of the rail line within 800m of Cabramatta Station which have the potential to provide for future high and medium density residential dwellings.

ARC Traffic + Transport has been commissioned to prepare this traffic assessment to determine the potential impacts of the Proposal and broader uplift in surrounding Study Area Precincts on the local and sub-regional road network, with specific focus (as agreed with Council and the RMS) on key intersections along the Hume Highway, Cabramatta Road East and Broomfield Street.

Further to our assessment, ARC has determined the following.

Public & Active Transport

The Site and broader Study Area Precincts have excellent accessibility to public transport (including rail and bus services) as well as to a range of education, retail, commercial, social and recreational services within the broader Cabramatta Town Centre.

The Site and broader Study Area Precincts have access to excellent pedestrian and cycle infrastructure, including access to the regional Parramatta to Liverpool 'Rail Trail' which runs directly adjacent to the Site in Broomfield Street; and pedestrian connections not only to public transport but also to the Cabramatta Town Centre west of the railway line, which would potentially be further enhanced by the provision of a pedestrian overbridge from the Site linking to the Cabramatta Station pedestrian overbridge.

The combination of public transport, pedestrian and cycle access/infrastructure provides significant potential for a reduction in (vehicle) trip generation, building on the existing low mode to car driver percentages evident in the Study Area.

Road Network Operations

The existing Site and adjacent sites within CTCP4 currently generate vehicle trips at a rate below 'standard' retail and commercial rates; to some degree this is a function of the (current) underutilisation of the CTCP4 sites, but moreover it reflects the proximity of CTCP4 to public transport and the broader Cabramatta Town Centre west of the railway. These same proximity factors will assist in reducing the future trip generation of the Site and adjacent CTCP4 sites.

The existing and future trip generation of the Site and broader Study Area Precincts has been determined further to surveys, on-site observations and reference to RMS trip generation guidelines so as to determine the net additional trip generation to the road network arising from the Proposal and uplift in the broader Study Area Precincts. Trips have then been distributed with reference to Bureau of Transport Statistics *Journey to Work* and *Household Travel Survey* data, noting a significant percentage of trips are generated to/from destinations/origins within the Fairfield LGA.

A forecast year 2031 has been adopted for the assessment, with annual increases in background traffic in Hume Highway and Cabramatta Road East determined with reference to RMS forecast data. Three forecast year scenarios have then been finalised, being 2031 with no Proposal (or uplift in the Study Area Precincts); 2031 with the Proposal alone (i.e. no uplift in the Study Area Precincts); and 2031 with the Proposal and uplift in the Study Area Precincts.

The performance of all key intersections (as identified by Council and the RMS) under existing (2016) and future conditions has then been assessed using the SIDRA intersection model (as agreed with Council and the RMS). The SIDRA modelling indicates that: -

• 2016 Base Flows

All key intersections operate at an acceptable Level of Service (LoS) with moderate average delays and spare capacity. However, there are existing capacity constraints at the Hume Highway & Hollywood Drive & Chadderton Street intersection, particularly in the PM peak hour relating to the availability of only 2 Hume Highway southbound approach lanes.

• 2031 Base Flows (No Proposal or uplift in Study Area Precincts)

By 2031 the intersection of Hume Highway & Hollywood Drive & Chadderton Street operates near capacity, i.e. with a Degree of Saturation (DoS) approaching 1, and Level of Service (LoS) 'D' in the PM peak hour.

All other key intersections continue to operate at an acceptable Level of Service, with moderate average delays and spare capacity.

• 2031 Plus Proposal Only

The additional trip generation arising from the Proposal alone has a very moderate impact on the future operation of the key intersections. All key intersections along the Hume Highway and Cabramatta Road East continue to operate with acceptable delays and spare capacity other than the intersection of Hume Highway & Hollywood Drive & Chadderton Street, where the existing capacity constraints are further exacerbated even by minor additional flows. This results in the Hume Highway & Hollywood Drive & Chadderton Street intersection operating essentially at capacity, and at LoS 'E' in the PM peak hour.

All local intersections continue to operate at an acceptable LoS, with moderate average delays and spare capacity.

2031 Plus Proposal and uplift in Study Area Precincts

The additional trip generation arising from the Proposal and uplift in the Study Area Precincts has a moderate impact on the future operation of the key intersections. All key intersections along the Hume Highway and Cabramatta Road East continue to operate at an acceptable LoS with moderate delays and spare capacity other than the intersection of Hume Highway & Hollywood Drive & Chadderton Street, where the existing capacity constraints are further exacerbated even by these moderate additional flows. This results in the Hume Highway & Hollywood Drive & Chadderton Street intersection operating over capacity, and at LoS 'E' in the PM peak hour.

All local intersections continue to operate at an acceptable LoS, with moderate average delays and spare capacity.

Road Network Operations

Further to the identification of constraints at the intersection of the Hume Highway & Hollywood Drive & Chadderton Street, ARC, in consultation with PDC Consulting, has examined potential upgrades by which to provide additional capacity. In this regard, the Hume Highway kerbside southbound lane is currently dedicated as a left turn lane. Reassigning this lane as a shared through/left lane – specifically given the existing availability of a third departure lane in the Hume Highway south of Hollywood Drive – provides significant capacity benefits. Further to this upgrade, the intersection of Hume Highway & Hollywood Drive & Chadderton Street would operate at an acceptable LoS and with spare capacity through all future scenarios.

It is our understanding that an all but identical upgrade for the intersection was examined as part of a recent Planning Proposal for a mixed-use development in Chadderton Street and further that the RMS has previously provided support for this upgrade. Certainly, our assessment supports what would be a relatively minor upgrade providing significant capacity and delay benefits.

As discussed, all other key intersections continue to operate at an acceptable LoS through all future scenarios, with moderate average delays and spare capacity. Notwithstanding, ARC and PDC Consulting have identified the potential for additional (relatively minor) upgrades within the network to further improve future capacity. These include: -

- At the intersection of Hume Highway & Cabramatta Road East, the Cabramatta Road East approach currently provides
 a left turn lane, shared left and right turn lane, and a short right turn lane. Clearway conditions are in place in the AM
 peak only. Extending the current clearway provisions to the PM peak and reassigning existing lanes to instead provide
 a short left, (clearway extended) shared left and right, and full right turn lanes provides capacity and (reduced) delay
 benefits under all future scenarios.
- At the priority intersection of Cabramatta Road East & Cabramatta Road East, delays to the right turn movement from north to west increase in both peak hour under all future scenarios, though LoS remains acceptable and there are queuing issues (back in Cabramatta Road East towards Broomfield Street). However, the removal of the right turn provision may warrant consideration in the future as part of broader changes, noting that sensitivity testing indicates that the redistribution of these (minor number of trips) could be accommodated by the adjacent intersection of Cabramatta Road East & Cumberland Street.
- Site trips are expected to be distributed to/from access points to Fisher Street, providing for the removal of existing Site vehicle access points to Broomfield Street and potentially the removal of the existing vehicle access points to Cabramatta Road East. Sensitivity testing indicates that the redistribution of trips assigned (as departure trips) to Cabramatta Road East to the intersection of Cabramatta Road East & Cumberland Street would have no impact on the (good) performance of the Cabramatta Road East & Cumberland Street intersection through all future scenarios.
- The priority intersections of Broomfield Street & Fisher Street, and Cumberland Street & Fisher Street, are forecast to continue operating at a good LoS, though additional No Standing restrictions (on the Fisher Street approaches to each intersection and adjacent to Site access points) may be warranted.
- Future detailed planning will be required to determine the safest and efficient access strategy for Fisher Street.

Broadly therefore, it is the conclusion of ARC that the Proposal and uplift in Study Area Precincts east of the railway line within 800m of Cabramatta Station can be accommodated by the local and sub-regional road network without significant upgrades to the road network.

Parking

The <u>CTC DCP</u> already provides what ARC would consider appropriate and sustainable parking provisions which respond to the proximity of the Site (and adjacent CTCP4 sites) to Cabramatta Station, the bus interchange and of course to the Cabramatta Town Centre west of the railway line.

ARC would recommend that these parking rates are applied to all future development within the CTCP4, noting that these low maximum rates provide significant benefits with regard to vehicle trip reductions, particularly in regard to residential trips. There is also the opportunity to reduce parking further to future detailed assessments of the complementary peak demands for retail, commercial and commuter parking across the Site. The <u>Fairfield City Wide Development Control Plan 2013</u> (FCW DCP) prescribes much higher high density residential parking rates for areas outside of the Cabramatta Town Centre Precincts (as described in the <u>CTC DCP</u>), even where those (surrounding) Precincts lie within 800m of Cabramatta Station. While it is our opinion that the <u>CTC DCP</u> rates would be appropriate for application to all high density residential development within 800m of Cabramatta Station, ARC would recommend as a minimum the adoption of the RMS <u>Guide to Traffic Generating Development</u> (<u>GTGD</u>) high density residential parking rates to all future high density within 800m of Cabramatta Station, noting that this would be consistent with *SEPP 65* (and by association the Department of Planning & Environment's <u>Apartment Design Guide</u>) provisions.

In addition, ARC would recommend the adoption of the <u>FCW DCP</u> medium density parking rates as maximum rates to all future medium density within 800m of Cabramatta Station, noting that these rates are generally similar to those detailed in the <u>GTGD</u>.

Introduction

Moon Investments Pty Ltd has commissioned a Planning Proposal (the Proposal) to support the redevelopment of an existing mixed-use parcel of land immediate east of Cabramatta Railway Station, bounded by Fisher Street to the north; existing residential dwellings, a car park and commercial development to the east; Cabramatta Road East to the south; and Broomfield Street to the west (the Site). The Proposal would specifically provide for amendments to existing height and Floor Space Ratios (FSR) as provided in the <u>Fairfield Local Environmental Plan 2013 (LEP 2013</u>).

Further to detailed discussions with Fairfield City Council (Council) and the Roads & Maritime Service (RMS), this traffic assessment accompanying the Proposal also specifically examines the potential for 'uplift' in areas immediately surrounding the Site as identified in previous Council strategies. These areas (the Study Area Precincts) include the existing mixed-use sites immediately east and south of the Site, which along with the Site comprise part of the Cabramatta Town Centre Precinct 4 (CTCP4) as identified in the <u>Cabramatta Town Centre Development Control Plan 5/2000</u> (<u>CTC DCP</u>); and adjacent low density residential areas on the eastern side of the rail line within 800m of Cabramatta Station which have the potential to provide for future high and medium density residential dwellings.

ARC Traffic + Transport (ARC) has been commissioned to assess the traffic and transport characteristics of the Proposal and broader uplift in Study Area Precincts east of the railway line within 800m of Cabramatta Station. In preparing this assessment, ARC has: -

- Visited the Site and surrounding areas to observe existing conditions.
- Commissioned and reviewed traffic surveys of key intersections as agreed with Council and the RMS.
- Prepared detailed traffic models of existing and future traffic conditions.
- In consultation with GLN Planning, examined parking rates applicable to the potential land-uses across the Study Area.
- Referenced relevant traffic studies, standards and guidelines, including:
 - o <u>Fairfield LEP</u>
 - o <u>CTC DCP</u>
 - o Fairfield City Wide Development Control Plan 2013 (FCW DCP)
 - o RTA Guide to Traffic Generating Developments (GTGD)
 - RMS <u>Technical Direction 2013 04a Guide to Traffic Generating Developments; Updated traffic surveys</u> (GTGD Update) and its supporting *Land Use Traffic Generation* assessments.
 - o Cabramatta Transport Management and Accessibility Study 2013 (TMAP 2013) prepared by GTA Consultants

As stated, ARC has had the opportunity to discuss the Proposal and the broader assessment principles in detail with Council and RMS officers, specifically in regard to the scope and methodology of this assessment. ARC would from the outset acknowledge the assistance of Council and RMS officers in this regard.

1 <u>Study Area</u>

1.1 Site Location

The Site is located immediately east of Cabramatta Station, and is bordered by Fisher Street to the north; existing residential dwellings, a car park and commercial development to the east; Cabramatta Road East to the south; and Broomfield Street to the west. Further to consultation with Council and landowners – and for the purpose of the Proposal - the Site includes the Fisher Street Car Park; the Seventh Day Adventist Church (70 Broomfield Street); and the existing occupied residential lot and vacant residential lot at 72 and 74 Broomfield Street respectively.

The Site is shown in its local context in Figure 1.1.

Figure 1.1 The Site

Source: Nearmap

1.2 Study Area Precincts

As discussed in the **Introduction**, this traffic assessment examines not only the Proposal itself, but also the potential uplift in the (currently) under-utilised CTCP4 commercial area in which the Site lies; and in the (currently) low density residential areas east of the railway line, and more specifically areas within 800m of Cabramatta Station. In this regard, GLN Planning has identified a number of 'Precincts' with significant redevelopment potential, which generally align with the (eastern) Precincts previously identified in <u>TMAP 2013</u> for potential uplift. The identification of these Study Area Precincts allows for further detail to be provided in regard to specific yields across the different parts of the Study Area, which in turn informs the detailed trip generation and trip distribution provided in later sections, noting that the individual Study Area Precincts are essentially designated as travel zones.

Figure 1.2.1 shows the individual sites within CTCP4, while **Figure 1.2.2** shows all of the Study Area Precincts considered in this assessment.

Source: Nearmap

Figure 1.2.2 Study Area Precincts

Source: Google, GLN Planning

1.3 Existing Zoning

The majority of the Study Area is zoned residential, including a mix of R2 (low density), R3 (medium density), and R4 (high density); while CTCP4 is zoned B4 (mixed use). Existing zones within the Study Area are shown in **Figure 1.3** below.

Figure 1.3 Existing Study Area Zoning

Source: Fairfield LEP

1.4 Existing Landuses

GLN Planning has prepared detailed information in regard to potential redevelopment across the Study Area, in part based on the methodology previously determined in the <u>TMAP 2013</u>, and further also to Council consultation.

Of key importance in this assessment is the identification of Study Area Precincts (and in some instances individual sites within those Precincts) with a 'realistic' potential for uplift. With regard to CTCP4 (including the Site, Tail and Island) uplift is expected further to increased building heights and FSR changes, and indeed simply through re-energising CTCP4. In the adjacent low density residential Study Area Precincts, the potential exists for the development of high density residential in more immediate proximity to Cabramatta Station (and to the Cabramatta Town Centre), and then medium density residential out to (generally) 800m from Cabramatta Station.

Information in regard to Gross Floor Area (GFA) and Gross Leasable Floor Area (GLFA) within CTCP4, and existing dwelling numbers across the broader Study Area Precincts, has been provided to ARC by GLN Planning as summarised in **Table 1.4** below, noting that some of the Study Area Precincts – and specifically Precincts 19 and 21, which have existing high levels of medium density development and/or particularly fragmented ownership – are not expected to be significantly (if at all) redeveloped in the foreseeable future.

Study Area Precincts	Low Density Residential	Retail	Slow Retail	Commercial	Hotel & Church	Fisher Street Car Park	
Existing Landuses	Dwellings	GLFA m ²	GLFA m ²	GFA m ²	GFA m ²	Spaces	
Site	1	2,441		3,000	2,900		
Tail		851	3,402	3,570			
Island		829		450			
Fisher CP						172	
16	88						
17	62						
18	63						
19							
20	30						
21	12						
22							
23	17						
24	32						
25	23						
Total	328	4,121	3,402	7,020	2,900	172	

Table 1.4 Study Area Precincts Existing Landuses

Source: GLN Planning

2 <u>Study Area Travel Characteristics</u>

2.1 Residential Travel Characteristics

2.1.1 Journey to Work Travel Mode & Destinations

2011 *Journey to Work* (JTW) data provided by the Bureau of Transport Statistics (BTS) has been reviewed to identify general residential trip characteristics including travel mode and employment destinations. While the JTW data only provides information on one journey purpose (i.e. commuter trips), it consistently provides one of the best indicators of broader peak hour travel characteristics. This review has focused on JTW data for Travel Zones 3418 and 3422, which together encompass the entire Study Area (as well as additional residential areas toward the Hume Highway not examined as part of this assessment). A summary of this data is provided in **Figure 2.1.1**.

Figure 2.1.1 Travel Mode & Destination, Resident Journey to Work Data

The JTW data indicates a relatively low percentage (58%) of car driver trips (for the journey to work), particularly when it is considered that the majority of the residential population represented by these Travel Zones lies outside of an 800m radius of the Site. Train is the primary non-car mode used (21%).

The JTW data indicates that a high percentage of residents also work within the Fairfield LGA, with other key employment destinations being the adjacent Liverpool LGA, Holroyd LGA and Bankstown LGA.

As previously discussed, while the JTW data provides strong indicators in regard to the existing (and future travel) characteristics within the Study Area, it is important to note that this data relates only to the journey to work; for residents in particular, work trips only comprise a proportion of all (peak period or daily trips), with other key trips including those to educational, service, retail and recreational destinations.

In this regard, the BTS 2011 *Household Travel Survey* (HTS) has also been reviewed. The HTS data similarly indicates that a majority of both discretionary (for example shopping and recreational) trips and non-discretionary trips (for example work and education) trips are within the Fairfield Local Government Area (LGA). This is not surprising; generally, the Study Area residents have excellent and immediate access to all services, either within Cabramatta itself or in the immediate surrounding Fairfield LGA, particularly including access to education, child care and sub-regional centre services at either Cabramatta or Fairfield.

2.1.2 Car Ownership

The HTS indicates that Cabramatta has a higher proportion of dwellings with no car or only 1 car when compared to the broader Sydney Statistical Division (i.e. across Metropolitan Sydney). A breakdown of car ownership is not available at the Travel Zone level, but only at the suburb (Cabramatta) level, which therefore also includes Travel Zones on the western side of the railway line and moreover general low density areas and areas of Cabramatta outside of 800m of Cabramatta Station. A summary of the HTS data is provided below.

Table 2.1.2 Cabramatta Car Ownership

Car ownership													
Cabramatta		201	1		Change								
Number of cars	Number % Fairfield City %		Number %		Fairfield City %	2006 to 2011							
No motor vehicles	1,451	21.6	11.8	1,496	22.5	12.6	-45						
1 motor vehicle	2,721	40.5	33.0	2,746	41.2	34.6	-26						
2 motor vehicles	1,358	20.2	30.7	1,159	17.4	29.5	+199						
3 or more motor vehicles	521	7.7	17.6	419	6.3	14.7	+101						
Not stated	676	10.1	6.9	839	12.6	8.6	-163						
Total households	6,725	100.0	100.0	6,659	100.0	100.0	+67						

Source: idcommunity/BTS

2.2 Employee Travel Characteristics

The JTW data for Travel Zones 3418 and 3422 has also been reviewed to determine key employee trip characteristics including travel mode and employee origins. A summary of this data is provided in **Figure 2.2**.

Figure 2.2 Travel Mode & Origin, Employee Journey to Work Data

The JTW data indicates a relatively high percentage (73%) of car driver trips (for the journey to work), with train again the primary non-car mode used but at only 9% of trips. This in our opinion reflects the availability of on and off-street parking within the Study Area for employees, and moreover a relatively low employment base within the Study Area.

The JTW data indicates that a high percentage of employee also live within the Fairfield, with other employment origins being the adjacent Liverpool LGA and Bankstown LGA. Again, this information tallies with the HTS data.

2.3 Urban Living Index

Urban Taskforce Australia, in association with McCrindle Research, have developed the *Urban Living Index* for suburbs across Metropolitan Sydney that provides a 'rating' for key criteria such as Affordability, Amenity and – of particular relevance to this assessment – Accessibility.

The Urban Living Index Accessibility Score is based on the following measures: -

- Access to work: Catching public transport to work is indicative of the accessibility of an area by means other than car.
- Population density: Higher density areas have greater overall accessibility.
- **Walking to work:** The proportion of a population who walk to work is an indication of the accessibility their area provides to local employment.
- **Transport sustainability**: Households who can get by without a car have greater accessibility overall not only to their workplace but also to other amenities close-by.

Cabramatta/Lansvale has an Accessibility Score of 15 (out of 20), or 'Excellent' accessibility. This is a significantly high score, reflecting in our opinion the excellent public transport accessibility of the area and transport sustainability. It is noted that there is (at present) only a moderate level of high density residential development in the area, which has a high correlation with the Accessibility Score (and overall *Urban Living Index* rating of an area), as stated in the *Urban Living Index* report: -

The areas of Sydney with the highest Urban Living Index rating correlate closely to the areas with the highest proportion of high density dwellings. These areas congregate around business hubs such as the City of Sydney and have been established such that the infrastructure caters to the needs of these dense populations. Such features include public transport, high number of employing businesses and a high prevalence of retail, food and recreation businesses, all facilitating the liveability and community of these areas.

Given the relatively moderate level of high density residential development in the Cabramatta-Canley Vale area - and noting that the rating is based on the broader Cabramatta-Canley Vale area, the majority of which lies outside of 800m of Cabramatta Station and the Cabramatta Town Centre - it is likely that an Accessibility Score based only on the Study Area (i.e. within 800m of Cabramatta Station) would be even higher than the *Excellent* score provided for the broader Cabramatta-Canley Vale area.

Cabramatta also ranks highly (15/20) in the Urban Living Index Amenity Score, which includes consideration of: -

- **Educational attendance**: The proportion of individuals in attendance at post-school educational institutions indicates high levels of drive and determination, as well as the proximity of higher education institutions to an area.
- Arts and Recreation: Arts and recreation businesses foster community engagement.
- **Restaurants and cafes**: Restaurants and cafes are hubs for community activity and social interaction therefore fostering vibrant communities.

• **Shopping**: The ability to shop locally creates greater social cohesion with more opportunities and time for local community connection.

It is noted that on other measures, Cabramatta currently ranks significantly lower, including Affordability (13/20), Employability (8/20), and – somewhat surprisingly in our opinion – Community (12/20).

Notwithstanding, the Proposal and broader uplift potential in the Study Area Precincts – which would specifically provide for increased residential densities as well as new and revitalised retail, commercial, services and recreational space – in our opinion provides the opportunity to not only take advantage of existing excellent Accessibility and Amenity conditions, but indeed to further increase 'scores' in regard to all of the *Urban Living Index* measures.

2.4 Existing Trip Generation

The trip generation characteristics of the Site and Study Area Precincts are detailed below, noting that the additional development potential provided for by the Proposal (and as forecast for the Study Area Precincts) would result in existing landuses being entirely replaced (by future mixed-use development, and/or high and medium density residential development). As such, it is essential to identify the existing trip generation of the Site and each Study Area Precinct so as to appropriately identify future *additional* flows to the local and sub-regional road network.

2.4.1 Cabramatta Town Centre Precinct 4 Trip Generation

Traffic surveys were conducted at key intersections around the CTCP4 as identified by Council and the RMS, and ARC also undertook observations and spot-surveys across CTPC4 throughout the preparation of this assessment. Based on a review of the traffic surveys (see **Section 4**) and our observations, some of the general trip generation characteristics of CTCP4 include: -

- CTCP4 generates significantly fewer trips than would be estimated with reference to the <u>GTGD Update</u> (or indeed the <u>GTGD</u>), for example based on a standard 'shopping centre' definition. This appears to be a factor of: -
 - The proximity of CTCP4 to the broader Cabramatta Town Centre west of the railway line (and therefore a high number of shared and walk trips).
 - The proximity of CTCP4 to Cabramatta Station and bus interchange (and therefore a high number of public transport trips).
 - The 'local' nature of the existing retail and commercial land-uses.
 - Currently under-utilised individual sites within CTCP4.
 - Land uses with minimal trip generation during the AM or PM peak period.

It is noted that the Proposal and potential uplift in the adjacent CTCP4 sites is expected to reinvigorate CTCP4 to a large extent, but that many of these trip reduction characteristics are expected to remain in place.

• Further to the identification of shared trips between CTCP4 and the broader Cabramatta Town Centre, there is also a level of shared trips between sites within CTCP4. For example, the general use car park at the rear of the Stardust Hotel is used by Hotel patrons and also by those visiting other sites fronting both Cabramatta Road East and Broomfield Street. Similarly, the Cumberland Street Car Park is used by visitors to sites across CTCP4.

These are of course features of any town centre, and again point to the broader reduction in trips as would otherwise be determined based on an assessment of individual sites.

With reference to the above, the existing trip generation rates of the individual CTCP4 sites is estimated as: -

• General Retail

- 1.0 trips per 100m² GLFA in the AM peak
- 2.0 trips per 100m² GLFA in the PM peak

As previously stated, these rates are generally lower than retail trip generation rates provided in the <u>GTGD Update</u>, to an extent a factor of under-utilisation of retail sites, but also a function of the proximity of the CTCP4 sites to public transport and to the broader Cabramatta Town Centre.

- Slow Retail
 - o 0.25 trips per 100m² GLFA in the AM peak
 - o 0.75 trips per 100m² GLFA in the PM peak

These rates – specifically applied to the bulky goods aligned land-uses across the Tail Precinct - are in line with the rates surveyed for similar bulky goods stores in the Land Use Trip Generation and Parking Generation Surveys Bulky Goods / Hardware Stores Analysis Report (Hyder, 2009) upon which the GTGD Update rates are based.

• Commercial

- o 1.5 trips per 100m² GFA in the AM peak
- \circ 1.5 trips per 100m² GFA in the PM peak

These rates are generally commensurate with the commercial trip generation rates provided in the <u>GTGD Update</u>, but in the PM peak hour (where they are higher than the <u>GTGD Update</u> rates) account for sites with higher trip generation rates, such as medical offices.

• Stardust Hotel

- $\circ~~$ 0.1 trips per $100m^2\,GFA$ in the AM peak
- 1.5 trips per 100m² GFA in the PM peak

The <u>GTGD Update</u> does not provide any comparable rates, but based on our past studies of hotels these rates are generally lower than an average suburban hotel.

Church

- \circ 0.1 trips per seat in the AM peak
- o 0.1 trips per seat in the PM peak

The <u>GTGD Update</u> does not provide any comparable rates, but again based on our past studies of churches these rates reflect the very minimal trip generation that occurs during the weekday AM and PM peak periods.

• Fisher Street Car Park

- 60 vph in the AM peak
- o 30 vph in the PM peak

The trip generation of the Fisher Street Car Park was surveyed in the AM and PM peak periods; while the Proposal would retain public parking (essentially on the same 'site') access options for the future development of the Site may provide for departure trips (from public parking, and/or a redeveloped Fisher Street Car Park) to Cabramatta Road East, i.e. the same departure access currently available from the Hotel Car Park. As such, while the use of the Fisher Street Car Park is not expected to significantly change (as a result of the Proposal) its trip distribution profile might change, and as such its trip generation requires definition.

2.4.2 Residential Precincts Trip Generation

Existing low density residential trip generation can be estimated with reference to the <u>GTGD Update</u>, which provides the following summary low density residential dwelling trip generation rates: -

Low Density Residential Dwellings

- \circ 0.95 vehicle trips per dwelling in the AM peak hour
- o 0.99 vehicle trips per dwelling in the PM peak hour

It is noted that the <u>GTGD Update</u> references a number of survey sites across western Sydney – including Liverpool – which indicate higher trip generation rates per dwelling than these summary rates in both the AM and PM peak periods. However, based on a review of the traffic survey data (see **Section 2**), consideration of the proximity to and use of public transport by residents (per the JTW data in **Section 1.5**) and the proximity to a range of services within the Cabramatta Town Centre, these summary trip rates are considered appropriate.

2.4.3 Trip Generation Summary

With reference to sections above, the tables below provide a summary of the estimated existing trip generation of the Site and each of the Study Area Precincts. It is again noted that some of the identified Precincts (19 and 21) are not expected to change, and as such the trip generation of these Precincts is assessed (in sections below) simply as existing background traffic.

Table 2.4.3.1 Study Area Precincts Existing AM Peak Hour Trip Generation

Total	Precinct 2	Precinct 1	Precinct 1	Precinct 1	Precinct 1	Fisher CP	Island	Tail	Site	Study Area Existing Trij AM Peak H						
	5	4	ω	2	4	0	9	8	7	6					a Precincts ip Generation Hour	
328	23	32	17		12	30		63	62	88				1	Dwellings	Low Density
312	22	30	16		11	29		60	59	84				1	0.95	AM Trips
62	4	6	ω		2	6		12	12	17				0	20%	z
249	17	24	13		9	23		48	47	67				4	80%	OUT
60											60				Trips	Commuter
60											60				1.00	AM Trips
57											57				95%	z
з											3				5%	OUT
4,121												829	851	2,441	GLFA m ²	Retail
41												8	9	24	1.00	AM Trips
23												ъ	5	13	55%	z
19												4	4	11	45%	OUT
3,402													3,402		GLFA m ²	Slow Retail
9													9		0.25	AM Trips
7													7		80%	z
2													2		20%	OUT
7,020												450	3,570	3,000	GFA m ²	Commercial
112												7	57	48	1.60	AM Trips
84												ъ	43	36	75%	z
28												2	14	12	25%	OUT
2,000														2,000	GFA m ²	Hotel
5														л	0.25	AM Trips
5														ы	90%	z
1														1	10%	OUT
50														50	Seats	Church
5														ъ	0.10	AM Trips
з														ω	50%	z
з														ω	50%	OUT
544	22	30	16		11	29		60	59	84	60	15	74	83	AM TOTAL	
240	4	6	ω		2	6		12	12	17	57	10	54	57	z	
304	17	24	13		9	23		48	47	67	3	6	20	27		OUT

Table 2.4.3.2 Study Area Precincts Existing PM Peak Hour Trip Generation

_	-	-	-	-	-	-	-	-	-	-	-	_	-	(0	2 m v	
rotal .	recinct 25	Precinct 24	Precinct 23	Precinct 22	Precinct 21	Precinct 20	Precinct 19	Precinct 18	Precinct 17	Precinct 16	isher CP	sland	Tail	ite	M Peak Hour	study Area Precincts Existing Trip Generation
328	23	32	17		12	30		63	62	88				1	Dwellings	Low Density
325	23	32	17		12	30		62	61	87				1	0.99	PM Trips
260	18	25	5		10	24		50	49	70				1	80%	N
65	5	6	ω		2	6		12	12	17				0	20%	OUT
30 30		-									30 30		-		1.0	Commuter PM 1
<u>۔</u>											0 3				00 10	Trips II
27											3 27				80E %	v ou
4,121												829	851	2,441	% GLFA n	T Retai
65												17		49	1 ² 2.00	PM Trip
33												8		24	50%	N
33												8		24	50%	OUT
3,402													3,402		GLFA m ²	Slow Retail
26													26		0.75	PM Trips
10													10		40%	N
5													15		60%	OUT
7,020												450	3,570	3,000	GFA m ²	Commercial
105												7	54	45	1.50	PM Trips
26												2	13	11	25%	z
79												5	40	34	75%	OUT
2,000		_											_	2,000	GFA m ²	Hotel
30														30	1.50	M Trips
24														24	80% 2	N
6 5	_						_				_			6 5	10% Sei)UT Chu
•														0	ats 0.	Irch PM
v 1														5	10 5(Trips I
ω ω	\vdash									_	_			3 3	0% 50	N OL
58	2.	3	1		1	u.		6	6	8	3	2.	7	H	%	
6 35	3 10	2 21	1		2 10	0 2		2 50	1 4	7 70	0 3	3 10	9 24	10 61	PM DTAL	
9 2	8	5	ω			4		°	9	0		0	4	8	Z	
27	5	6	ω		2	6		12	12	17	27	13	55	67		ŪŢ

14 4

2.5 Existing Trip Distribution

2.5.1 Origin & Destination Distribution

With reference to the available JTW and HTS data, the origin/destination profile for each of the Study Area Precincts used in the trip assignment (see **Section 2.6** below) is shown in **Table 2.5.1** below.

Table 2.5.1 Origin & Destination Profile

	Cabrama	atta Town Ce	entre Precin	ct 4 Sites	Residential Precincts										
Study Area Precincts Origin/Destination Profile	Site	Tail	Island	Fisher St Car Park	16	17	18	19	20	21	22	23	24	25	
Hume Highway North	20%	20%	20%	15%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	
Hume Highway South	13%	13%	13%	10%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	
Cabramatta Road West	23%	23%	23%	25%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Bareena Street	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	
Internal (Study Area)	20%	20%	20%	25%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	

It is noted that a percentage of residential Study Area Precinct trips distributed to both Cabramatta Road West and Bareena Street would essentially comprise local or 'internal' trips to the Cabramatta Town Centre west of the railway.

2.5.2 Arrival & Departure Distribution

The arrival and departure trip distribution profiles for individual landuses in both peak periods are shown in **Table 2.4.3.1** (AM Peak) and **Table 2.4.3.2** (PM Peak) above.

2.6 Existing Trip Assignment

The peak hour trip generation as determined in **Section 2.4** has been assigned to the local road network with regard to the trip distribution profiles outlined in **Section 2.5**. The resulting estimates of existing flows at key intersections generated by the Site, and by the broader Study Area Precincts, are shown in the figures below.

Figure 2.6.1 Planning Proposal Site Existing AM Peak Hour Trips

Figure 2.6.2 Planning Proposal Site Existing PM Peak Hour Trips

Figure 2.6.3 All Study Area Precincts Existing AM Peak Hour Trips

Figure 2.6.4 All Study Area Precincts Existing PM Peak Hour Trips

3 Public & Active Transport

The successful management of the future trip generation of the Proposal and broader uplift in the Study Area Precincts will rely in large part on access to what is already excellent public and active transport infrastructure, and specifically the immediate access to the metropolitan rail network at Cabramatta Station; to the local and sub-regional bus route interchanges at Cabramatta Station; and to the local pedestrian and cycle network, including the existing off-road cycleway (the 'Rail Trail') along Broomfield Street.

The public and active transport opportunities available to the Site and indeed to all Study Area Precincts are examined in sections below.

3.1 Rail

3.1.1 Proximity to Cabramatta Station

All of the CTCP4 sites are located within 400m of Cabramatta Station, while the entire Study Area essentially lies within 800m of Cabramatta Station. These two key 'Ped-Shed' distances are shown in **Figure 3.1.1**.

Figure 3.1.1 Cabramatta Station Ped-Shed

Source: Google

Clearly, all precincts have excellent and immediate access to Cabramatta Station, and of course excellent and immediate access also to bus services (at Cabramatta Station) and more broadly the Cabramatta Town Centre (west of the railway).

3.1.2 Existing Rail Services

The Site is located directly adjacent to Cabramatta Station, which is located on the (T2) Main South Line, but is also serviced by the T3 Bankstown Line and T5 Cumberland Line, making Cabramatta one of the best serviced centres in south-western Sydney, and indeed in Metropolitan Sydney, providing access to every other station in the network either directly or via a maximum of 1 interchange.

The frequency of services varies across the three lines, but in the peak periods: -

- Trains are scheduled every 10 15 minutes on the T2 line, providing direct access to key centres such as Campbelltown, Granville, Strathfield, Burwood and then Sydney City (Redfern, Central, Town Hall, Wynyard and City Circle)
- Trains are scheduled every 20 30 minutes on the T3 line, providing direct access to key centres such as Liverpool, Bankstown, Tempe and Sydney City
- Trains are scheduled every 30 minutes on the T5 line, providing direct access to key centres such as Campbelltown, Liverpool, Merrylands, Parramatta, Westmead and Blacktown

The Sydney Trains Network is shown in Figure 3.1.2.

Figure 3.1.2 Sydney Trains Network

Source: Transport Sydney Trains

3.1.3 Future Rail Network

Transport for NSW's *Sydney's Rail Future* acknowledges capacity constraints within the existing rail network, and indeed by 2031 if major capacity improvements are not made, the CBD, Western, Northern, North Shore, Bankstown, East Hills and Airport lines and North-West Rail Link will reach crowding levels during the morning peak period that are deemed 'high' or above. Cabramatta Station however (based on the available capacity of the three lines) has a 'very low' crowding level allowing the majority of passengers to be seated.

3.1.3 2031 Network Performance Forecast

Source: Sydney's Rail Future

In response to constraints elsewhere in the rail network, a range of network improvements and enhancements are proposed in *Sydney's Rail Future*, the key components of which include: -

- Operational efficiencies, including timetable revisions, platform access and incident response management.
- Network efficiencies, including the completion of the South West Rail Links, station upgrades, automatic train operations, dedicated fleet types and additional track infrastructure.
- Implementation of a new rapid transport system, including more efficient services on existing lines and the completion and integration of the North-West Rail Line with the existing Epping to Chatswood.

- A second Sydney Harbour crossing and new CBD rail line, providing direct access from the North-West Rail Line into the Sydney CBD and as importantly freeing up significant capacity within the broader rail network.
- Extension of new single deck services to Bankstown and Hurstville and broader capacity improvements within the southern rail network.

With specific reference to Cabramatta, the conversion of the Bankstown Line (from Bankstown) to a Rapid Transit line would provide an alternative to the existing Sydney City direct services; while requiring an interchange at Bankstown, the frequency of these new rapid services and the extension of direct services through to Chatswood provides significant opportunities for high standard access to commercial centres north of Sydney City.

In addition, connections between Liverpool and Parramatta (through Cabramatta and Fairfield) will be improved not only during peak period but across the day, with a fleet of new trains providing greater reliability and efficiency to these key (for Cabramatta) employment and service centres.

In summary, the Site and all Study Area Precincts are ideally located to take advantage of what are already excellent rail services, services which will only be further enhanced in the future and provide efficient and direct access between Cabramatta Station and the entire Sydney Metropolitan area.

3.2 Bus Services

3.2.1 Existing Bus Services

Bus services within Bus Region 3 (in which the Study Area lies) are operated by Transit Systems and Transdev, and include the following routes: -

- Route 805: Cabramatta to Liverpool via Green Valley (15 to 30-minute headway during peak periods)
- Route 807: Cabramatta to Cecil Hills via Edensor Park (30-minute headway during peak periods)
- Route 815: Cabramatta to Mount Pritchard (60-minute headway across the day)
- Route 816: Cabramatta to Greenfield Park via Bonnyrigg (30-minute headway during peak periods)
- Route 904: Fairfield to Liverpool via Canley Vale (30 to 40-minute headway during peak periods)
- Route S1: Cabramatta to Lansvale (60-minute headway across the day)

These existing services are shown in Figure 3.2.1 below.

Figure 3.2 Existing Bus Services

Source: Transit Systems, Transdev

With the exception of the Route 904 and Route 61 services, all buses utilise the bus stops on the western side of Cabramatta Station. The Route S1 service utilises the bus stops on the eastern side of Cabramatta Station (Broomfield Street) while the Route 904 service operates along Vale Street and Longfield Street immediate east of the Study Area.

3.2.2 Future Bus Services

With reference to **Section 3.1**, the proximity and efficiency of Cabramatta Station to future Study Area residents and workers means that bus services are likely to play a secondary role (to rail) in providing with regard to public transport. Notwithstanding, the importance of such routes for access to local and sub-regional services, recreational areas and of course for many, between home and work, should not be understated given the significant proportion of trips that are contained within the Fairfield LGA. As such, improvements detailed in Transport for NSW's *Sydney's Bus Future* which will further increase public transport opportunities include: -

 A new suburban route from Bankstown to Prairiewood via Fairfield and – perhaps most important – via Wetherill Park and the Greystanes Employment Area, both of which are expected to remain significant employment centres for future residents. Public transport services to the Greystanes Employment Area are particularly poor at present, requiring numerous interchanges, whereas further to this new route a single change (at Fairfield) would be required. • More generally, the expansion and upgrade of suburban services radiating from the key sub-regional centres (such as Liverpool and Parramatta) again reducing the requirement for multiple transport mode interchanges to access all parts of the Sydney Metropolitan area.

In summary, the Site and all Study Area Precincts are ideally located to take advantage of what are already excellent local and sub-regional bus services, which offer a viable public transport option for key suburban trips within the Fairfield LGA and sub-region.

3.3 Pedestrian & Cycle Infrastructure

3.3.1 Existing Pedestrian & Cycling Infrastructure

The Parramatta to Liverpool Cycleway (Rail Trail) runs parallel to the T5 railway line from Parramatta through to Liverpool, and in the vicinity of the Study Area runs along Broomfield Street (from Bareena Avenue through Liverpool Street) directly adjacent to the Site. The Parramatta to Liverpool Cycleway provides an off-road cycleway for use both cyclists and pedestrians, and offers trips times of some 30 to 35-minutes to/from Parramatta, and less than 20-minutes to/from Liverpool.

Immediately north of Cabramatta, the Parramatta to Liverpool Cycleway connects to the Regional Cycleway running along Orphan School Creek west to the Western Sydney Parklands. North of Fairfield, the Parramatta to Liverpool Cycleway connects to the Regional Cycleway running along Prospect Creek west to Wetherill Park and then north to Blacktown.

The route of the Parramatta to Liverpool Cycleway is shown in **Figure 3.3.1.1**, while additional sub-regional cycle infrastructure is shown in **Figure 3.3.1.2**.

Source: RTA, Active Australia

Figure 3.3.1.2 Sub-Regional Cycle Infrastructure

Source: Fairfield City Council

Within the Study Area, sub-regional (Cabramatta Road East) and local roads generally provide footpaths on at least one side of the road, while signalised crossing points are provided within the CTCP4 at the intersections of Cabramatta Road East & Broomfield Street, and Cabramatta Road East & Cumberland Street. Local roads are also generally 'cycle friendly' as a function of low traffic flows.

The Cabramatta Station pedestrian overbridge (including accessible facilities) also provides an essential link between CTCP4 (and surrounding Precincts east of the railway line) with the Cabramatta Town Centre west of the railway line.

3.3.2 Future Walking & Cycling Infrastructure

As described above, an excellent level of cycle and pedestrian infrastructure is already available to the Study Area for both local and sub-regional access, as well as for access to and through Cabramatta itself. Notwithstanding, the Proposal provides the potential for further improvements, including: -

- A new pedestrian overbridge connecting a podium level within the Site to the existing Cabramatta Station pedestrian overbridge.
- New 'internal' pedestrian connections through the Site (at ground level) and specifically between Broomfield Street and Fisher Street.
- Local footpath and pavement improvements.

• Additional ancillary cycling facilities such as cycle parking/lockers.

In summary, the Site and Study Area Precincts are ideally located to take advantage of what is an already excellent level of cycle and pedestrian infrastructure, while additional augmentation of the cycle/pedestrian network would even further enhance access to key local and indeed sub-regional origins/destinations.
4 Road Network

4.1 Road Classification

The RMS and AustRoads provide guidance in regard to the classification of roads so as to appropriately determine the road hierarchy and allows for an assessment of (potential impacts associated with) traffic flow changes within the context of that hierarchy. The RMS <u>Network Planning Practice Notes</u> (2008) provides the following general classifications relevant to the road network providing for the Site: -

- An Arterial Road will typically have traffic volumes of over 15,000 vehicles per day (or over 1,500 vehicles per peak hour) and provide major inter-regional linkages.
- A Sub-Arterial Road will typically have traffic volumes of between 5,000vpd and 20,000vpd (or 500vph 2,000vph) and provide secondary inter-regional linkages.
- A Collector Road will typically have traffic volumes of between 2,000vpd and 10,000vpd (or 200vph 1,000vph) and provide the link between local roads and regional (Arterial/Sub-Arterial) roads.
- A Local Road will typically have traffic volumes of less than 2,000vpd (or less than 200vph) and provide direct access from local areas to the collector, sub-arterial or arterial road network.

4.2 Key Roads

4.2.1 Cabramatta Road (East and West)

Cabramatta Road is a State (Arterial) Road and provides key east-west arterial connectivity between the Hume Highway to the east and the Cumberland Highway to the west (and then further west via Cabramatta Road West to the M7 and Cecil Park). Within the Study Area, Cabramatta Road East generally provides 4 traffic lanes (2 lanes per direction) with clearway restrictions during peak periods, and additional approach lane infrastructure at key intersections (see **Section 4.3** below). Cabramatta Road East has a posted speed limit of 60km/h, with school zone speed restrictions in operation east and west of Cumberland Street in the vicinity of Cabramatta Public School.

4.2.2 Hume Highway

The Hume Highway is a State (Arterial) Road and provides sub-regional access throughout south-west Sydney between Parramatta Road at Ashfield and the M7, M5 and Campbelltown Road interchanges to the south. East of the Study Area, the Hume Highway generally provides 6 traffic lanes (3 lanes per direction) with clearway restrictions and significant additional lane infrastructure at key intersections (see **Section 4.3** below). The Hume Highway has a posted speed limit of 70km/h.

4.2.3 Cumberland Street

Cumberland Street is a collector road which runs north-south through the Study Area from Curtin Street in the north to Liverpool Street in the south. Cumberland Street provides 2 traffic lanes (1 lane per direction) and additional kerbside lanes which are generally utilised for on-street parking and to provide additional approach capacity at its signalised intersections with Cabramatta Road East, and with Longfield Street. Cumberland Street has a posted speed limit of 50km/h, with additional school zone speed limits in the vicinity of Cabramatta Public School.

4.2.4 Longfield Street

Longfield Street is a collector road which runs east-west between the Hume Highway in the east and Broomfield Street in the west. Longfield Street provides 2 traffic lanes (1 lane per direction) and additional kerbside lanes which are generally utilised for on-street parking and bus zones, as well as to provide additional approach capacity at the signalised intersection with Cumberland Street. Longfield Street has a posted speed limit of 50km/h.

4.2.5 Broomfield Street

Broomfield Street is a collector road which runs parallel to and east of the railway line from Bareena Street in the north to Sussex Street in the south. Broomfield Street provides 2 traffic lanes (1 lane per direction) and additional kerbside lanes which are generally utilised for on-street parking, bus zones (particularly in the vicinity of Cabramatta Station) as well as to provide additional approach capacity at the signalised intersection with Cabramatta Road East. Broomfield Street has a posted speed limit of 50km/h, with a reduced 40km/h High Pedestrian Activity Area speed limit in the vicinity of Cabramatta Station.

4.2.6 Lansdowne Road

Lansdowne Road is a collector road which runs generally east-west from the Hume Highway to Bareena Street, but is also accessible through the area north-east of Cabramatta East via Chancery Street and Vale Street. Lansdowne Road provides 2 traffic lanes (1 lane per direction) and additional kerbside lanes which are generally utilised for on-street parking and bus zones, as well as to provide additional approach capacity at the signalised intersection with Hume Highway. Lansdowne Road has a posted speed limit of 50km/h.

4.2.7 Bareena Street

Bareena Street is a collector road which runs generally east-west from Vale Street to Broomfield Street and then Railway Parade, providing an important crossing of the railway line. East of Broomfield Street, Bareena Street provides 2 traffic lanes (1 lane per direction) and additional kerbside lanes which are generally utilised for on-street parking. Bareena Street has a posted speed limit of 50km/h.

4.2.8 Fisher Street

Fisher Street is a local road running east-west between Cumberland Street and Broomfield Street. Fisher Street provides 2 traffic lanes (1 lane per direction) and additional kerbside lanes which are generally utilised for on-street parking. Fisher Street has a posted speed limit of 50km/h.

4.2.9 Local Streets

A number of local streets within and adjacent to the Study Area provide key access to the primary collector and subregional routes (as described above) and form part of local access routes for residents. North of Cabramatta Road East, Longfield Street, Ralph Street and Chadderton Street provide alternative access routes to the Hume Highway, as does Vale Street and Chancery Street to the intersection of Hume Highway & Lansdowne Road.

South of Cabramatta Road East, local roads including Boundary Lane, Junction Street and Liverpool Street provided eastwest connectivity between Hume Highway and Broomfield Street. North-west connecting local roads, including Levuka Street/Albert Street, Lovoni Street and Loloma Street, all provide access to and from these local areas to Cabramatta Road East.

Broadly, these local roads provide 2 traffic lanes (1 lane per direction) and additional kerbside lanes which are generally utilised for on-street parking.

4.3 Key Intersections

4.3.1 Sub-Regional Intersections

Sub-regional intersections which would potentially be impacted by the Proposal and broader uplift within the Study Area Precincts are primarily located along the Hume Highway and Cabramatta Road East. Further to consultation (and agreement) with Council and the RMS, the following key sub-regional intersections have been identified for detailed analysis: -

- Hume Highway & Lansdowne Road (Signalised)
- Hume Highway & Hollywood Drive & Chadderton Road (Signalised)
- Hume Highway & Cabramatta Road East (Signalised)
- Cabramatta Road East & Cumberland Street (Signalised)

4.3.2 Local Intersections

Local intersections within the Study Area generally provide the access between the commercial and residential precincts and the key sub-regional intersections/road network. Further to consultation (and agreement) with Council and the RMS the following local intersections have been identified for detailed analysis: -

- Cabramatta Road East & Cabramatta Road East (Priority)
- Cabramatta Road East & Broomfield Street (Signalised)
- Broomfield Street & Longfield Street (Priority)
- Broomfield Street & Bareena Avenue (Roundabout)
- Cumberland Street & Longfield Street (Signalised)

The majority of other local intersections north and south of Cabramatta Road East operate as simple priority intersections, generally with priority to the key north-south routes such as Vale Street (north of Cabramatta Road East) and Cumberland Street and Broomfield Street (south of Cabramatta Road East).

For the local road intersections to Cabramatta Road East: -

- The intersections of Roebuck Street, Vale Street, Lasa Street and Loloma Street provide left in/left out only access.
- The intersection of Fairview Street provides a channelised right turn Cabramatta Road East to Fairview Street but no right turn Fairview Street to Cabramatta Road East.
- The intersection of Lovoni Street provides all movements, including a channelised right turn Cabramatta Road East to Lovoni Street.
- The intersections of Boundary Lane and Levuka Street provide for all movements.

For the local intersections to Hume Highway: -

- The intersection of Junction Street provides left in/left out only access.
- The intersection of Liverpool Street provides a channelised right turn Hume Highway to Liverpool Street, but no right turn Liverpool Street to Hume Highway.

4.4 Existing Traffic Flows

4.4.1 Traffic Count Data

ARC commissioned peak period traffic surveys at each of the key intersections as identified by Council and the RMS (as detailed in sections above). The surveys were conducted in November 2016 by Matrix Traffic & Transport Data, and are attached as **Appendix A** in electronic format.

4.4.2 2016 Peak Period Traffic Flows

With reference to the traffic surveys in **Appendix A**, 2016 peak period traffic flows are provided in the figures below, with the selected peak hours for assessment based on the peak hours identified along the Hume Highway, though it is noted that peak hours are generally consistent across all key intersections, and that there is no evidence of any significant interpeak periods (within the peak hours).

Figure 4.4.2.1 2016 AM Peak Hour (7:45am – 8:45am) Traffic Flows

Figure 4.4.2.2 2016 PM Peak Hour (5:00pm – 6:00pm)

4.5 Future Traffic Flows

4.5.1 Average Annual Growth

ARC has examined background traffic growth with reference to the EMME Strategic Traffic Forecasting Model outputs provided to ARC by the RMS, with resulting estimates of annual growth (2016 – 2031) in key roads provided in **Table 4.5.1**.

Table 4.5.1 Average Annual Growth Rates

Forecast Average Annual	AM Pea	k Period	PM Peak Period			
Growth Rates	North/East	South/West	North/East	South/West		
Hume Highway	0.6%	1.0%	0.8%	0.5%		
Cabramatta Road East	0.7%	2.4%	1.4%	1.5%		
Lansdowne Road	0.5%	0.5%	0.8%	0.5%		
Bareena Street	0.5%	1.0%	0.6%	0.8%		
Broomfield Street	1.0%	0.8%	1.5%	0.1%		

Source: RMS

All other local roads (and specifically Cumberland Street and Longfield Street) are estimated to have only very minor annual growth.

4.5.2 2031 Base Flows

With reference to the 2016 traffic surveys detailed in **Section 4.4.2** and the average growth rates in **Table 4.5.1** above, base traffic flows for a forecast year 2031 have been developed, and are provided in the figures below.

Figure 4.5.2.1 2031 AM Peak Hour Base Flows

Figure 4.5.2.2 2031 PM Peak Hour Base Flows

4.6 Intersection Operations

4.6.1 SIDRA

The operation of all intersection identified in **Section 4.3** above have been assessed by ARC in association with PDC Consultants using the SIDRA intersection model. SIDRA reports key intersection performance indicators as detailed below.

4.6.1.1 Level of Service

Level of Service (LoS) is a basic performance indicator assigned to an intersection based on average delay. For signalised and roundabout intersections, LoS is based on the average delay to all vehicles, while at priority controlled intersections LoS is based on the worst approach delay. The RMS LoS parameters (as used in the SIDRA analysis) are detailed in **Table 4.6.1.1**.

Table 4.6.1.1 RMS Level of Service Parameters

Level of	Control delay per vehicle in seconds (d) (including geometric delay)									
(RMS)	Signals and Roundabouts	Rating	Stop and Give Way Signs							
А	d < 14.5	Good	d < 14.5							
В	14.5 < d < 28.5	Good with acceptable delay	14.5 < d < 28.5							
С	28.5 < d < 42.5	Satisfactory	28.5 < d < 42.5							
D	42.5 < d < 56.5	Near capacity	42.5 < d < 56.5							
E	56.5 < d < 70.5	At capacity	56.5 < d < 70.5							
F	70.5 < d	Over capacity	70.5 < d							

Source: SIDRA

4.6.1.2 Degree of Saturation

Degree of Saturation (DoS) is defined as the ratio of demand (arrival) flow to capacity. DoS above 1.0 represent oversaturated conditions (demand flows exceed capacity) and degrees of saturation below 1.0 represent under-saturated conditions (demand flows are below capacity). The capacity of the movement with the highest DoS is reported.

4.6.1.3 Delay

Delay represents the difference between interrupted and uninterrupted travel times through and intersection, and is measured in seconds per vehicle in this assessment. Delays include queued vehicles accelerating and decelerating from/to the intersection stop, as well as general delays to all vehicles travelling through the intersection. With reference to the LoS criteria above, the average intersection delay for signals and roundabouts represents an average of delays to all vehicles on all approaches, while for priority intersections the average delay for the worst approach is used.

4.6.2 Existing Intersection Operations

 Table 4.6.2 provides a summary of existing intersection operations further to SIDRA analysis; SIDRA reports are provided in Appendix B.

Table 4.6.2 Existing Intersection Operations

2016 Intersection Operations	Level of	Service	Average	Delay (s)	Degree of Saturation		
	AM	PM	AM	PM	AM	PM	
Hume & Lansdowne	В	В	18.1	18.2	0.617	0.752	
Hume & Hollywood & Chadderton	В	С	26.3	28.7	0.787	0.897	
Hume & Cabramatta East	С	С	29.0	29.9	0.659	0.751	
Cabramatta East & Cumberland	В	В	18.1	20.0	0.577	0.645	
Cabramatta East & Cabramatta East	В	А	1.5	1.3	0.290	0.247	
Cabramatta East & Broomfield	В	В	16.4	16.8	0.215	0.265	
Cumberland & Longfield	А	В	14.1	15.0	0.197	0.257	
Broomfield & Longfield	А	А	3.9	4.4	0.219	0.271	
Broomfield & Bareena	А	А	6.5	7.0	0.393	0.570	

With reference to Table 4.6.2: -

4.6.2.1 Hume Highway & Lansdowne Road

The intersection of Hume Highway & Lansdowne Road operates at an acceptable LoS in both peaks, with moderate delays and spare capacity.

4.6.2.2 Hume Highway & Hollywood Drive & Chadderton Street

The intersection of Hume Highway & Hollywood Drive & Chadderton Street operates at an acceptable LoS in both the AM and PM peaks, but there are existing capacity constraints arising primarily from the reduced southbound approach capacity in Hume Highway, which is restricted to 2 lanes so as to provide a dedicated left turn lane Hume Highway to Hollywood Drive, noting that 3 departure lanes (in Hume Highway south of Hollywood Drive) are available.

SIDRA testing of an upgraded intersection design, reassigning the existing left turn lane Hume Highway to Hollywood Drive as a shared left and through lane (again, with through traffic able to utilise the available third kerb-side departure lane) indicates significant benefits in regard to both delay and capacity, with SIDRA reporting: -

- LoS 'B' in both the AM and PM peak hours
- In the PM peak hour, an improvement in available capacity (to a DoS 0.666)

It is our understanding that an all but identical upgrade for the intersection was examined as part of a recent Planning Proposal for a mixed-use development in Chadderton Street (recently approved for determination by Council) and further that the RMS has previously provided support for this upgrade.

4.6.2.3 Hume Highway & Cabramatta Road East

The intersection of Hume Highway & Cabramatta Road East operates at a good LoS, with moderate delays and spare capacity in both the AM and PM peaks.

4.6.2.4 Cabramatta Road East & Cumberland Street

The intersection of Cabramatta Road East & Cumberland Street operates at a good LoS, with moderate delays and spare capacity in both the AM and PM peaks.

4.6.2.5 Local Intersections

All other local signalised, roundabout and priority intersection operate at a good LoS, with moderate delays and appropriate spare capacity in both the AM and PM peaks.

4.6.3 2031 Base Flow Intersection Operations

Table 4.6.3 provides a summary of 2031 Base Flow intersection operations further to SIDRA analysis; full SIDRA reports are provided in **Appendix C**.

Table 4.6.3 2031 Base Intersection Operations

2031 Base Flows	Level of	Service	Average	Delay (s)	Degree of Saturation		
	AM	PM	AM	PM	AM	PM	
Hume & Lansdowne	В	В	18.1	19.2	0.720	0.811	
Hume & Hollywood & Chadderton	С	D	36.7	54.7	0.894	0.986	
Hume & Hollywood & Chadderton Upgrade	С	В	34.4	27.7	0.894	0.755	
Hume & Cabramatta East	С	С	30.8	32.9	0.780	0.854	
Cabramatta East & Cumberland	В	В	16.3	19.6	0.555	0.684	
Cabramatta East & Cabramatta East	В	В	1.6	1.5	0.347	0.275	
Cabramatta East & Broomfield	В	В	16.6	17.4	0.243	0.290	
Cumberland & Longfield	А	В	14.1	14.7	0.202	0.290	
Broomfield & Longfield	А	А	3.9	4.4	0.240	0.290	
Broomfield & Bareena	А	А	7.4	8.6	0.498	0.665	

With reference to Table 4.6.3: -

4.6.3.1 Hume Highway & Lansdowne Road

The intersection of Hume Highway & Lansdowne Road continues to operate at an acceptable LoS in both peaks, with moderate delays and spare capacity.

4.6.3.2 Hume Highway & Hollywood Drive & Chadderton Street

The intersection of Hume Highway & Hollywood Drive & Chadderton Street operates at an acceptable LoS in the AM peak while retaining spare capacity, but in the PM peak the existing capacity constraints are further exacerbated, resulting in the intersection operating near capacity. However, SIDRA testing of the upgraded intersection design as detailed in **Section 4.6.2.2** indicates that the upgrade would provide appropriate LoS and DoS through 2031.

4.6.3.3 Hume Highway & Cabramatta Road East

The intersection of Hume Highway & Lansdowne Road continues to operate at an acceptable LoS in both peaks, with moderate delays and spare capacity.

4.6.3.4 Cabramatta Road East & Cumberland Street

The intersection of Cabramatta Road East & Cumberland Street operates at a good LoS, with moderate delays and spare capacity in both the AM and PM peaks.

4.6.3.5 Local Intersections

All other local signalised, roundabout and priority intersection operate at a good LoS, with moderate delays and significant spare capacity in both the AM and PM peaks.

5 Planning Proposal & Study Area Precincts Uplift

5.1 Study Area Precincts Uplift

5.1.1 Landuses

GLN Planning has provided ARC with landuse (and yield) forecasts for the Site and all Study Area Precincts which reflect: -

- Proposed FSR.
- Proposed height limits.
- Retention of ground level retail across the CTCP4.
- Realistic development potential based on (fragmented) ownership, costs and other considerations.

These potential landuses are summarised in Table 5.1.1.

Table 5.1.1 Site & Study Area Precincts Landuses

Study Area Precincts	High Density	High Density Medium Densty Retail Slow Retail Commercial Dwellings Dwellings GLFA m ² GLFA m ² GFA m ²		Slow Retail	Commercial	Hotel & Church	Fisher Street Car Park	
Forecast Landuses	Dwellings			GFA m ²	GFA m ²	Spaces		
Site	619		4,616		8,189	1,602		
Tail	116		610	2,440	2,711			
Island	23		599		532			
Fisher CP							172	
16		175						
17		178						
18	898							
19								
20	206	66						
21	283							
22								
23	177							
24	123	66						
25		60						
Total	2,445	545	5,824	2,440	11,432	1,602	172	

Source: GLN Planning

With reference to Table 5.1.1, it is noted that: -

• Based on our discussions with Council, it is expected that the slow trade retail floor space provided within the Tail Precinct be retained rather than be developed as more 'standard' retail.

• The potential exists for additional commuter parking to be provided within the revised Fisher Street Car Park; however, for the purpose of this assessment the existing number of spaces (and more importantly the existing trip generation) has been considered.

As stated previously, the landuses outlined in **Table 5.1.1** would entirely replace the existing landuses as detailed in **Table 1.4**.

5.2 Access

5.2.1 Cabramatta Town Centre Precinct 4 Sites

Based on our discussions with Council, vehicle access to Broomfield Street is not preferred, and ARC would certainly agree given the availability of access from Fisher Street; as such, this assessment provides for primary vehicle access to Fisher Street and no vehicle access to Broomfield Street.

While the number and location of (future) vehicular access points to Fisher Street would be determined as part of future detailed Development Applications, this assessment also provides for the retention of the Site's Cabramatta Road East vehicular egress only access point, though this may be removed further to future detailed design.

It is expected that all vehicular access to the Tail would continue to be via Cumberland Street (likely in the general vicinity of the existing car park access point to provide appropriate clearance from the intersection of Cabramatta Road East & Cumberland Street). While future detailed studies would be required to determine an appropriate vehicular access point for the Island, this assessment provides for such to Broomfield Street at the southern boundary of the Island.

Figure 5.2.1 summarises the CTCP4 site access points used in this assessment.

Figure 5.2.1 Cabramatta Town Centre Precinct 4 Sites Access

Source: Nearmap

Pedestrian access is expected to be available to all sites within CTCP4 directly from street level as currently provided. In addition, and as discussed in **Section 3**, the potential exists for a new pedestrian overbridge to link the Site with the Cabramatta Station (pedestrian) overbridge, providing a complete pedestrian link between Cabramatta Town Centre west of the railway line and the CTCP4 sites (and indeed with the broader Study Area Precincts).

5.2.2 Study Area (Residential) Precincts Access

Access points for the Study Area (Residential) Precincts would be direct to local roads, with the actual locations to be determined as part of future detailed Development Applications. Notwithstanding, at this time (and for the purpose of this assessment): -

- Access to Precinct 21 is provided directly to Cabramatta Road East (as left in/left out only); this is a result of the only significant potential for uplift in Precinct 21 being sites along Cabramatta Road East.
- Access to Precincts 23, 24 and 25 is provided to Curtain Street only, again based on the location of the sites within these Precincts with significant potential for uplift.

Figure 5.2.2 summarises the Study Area (Residential) Precincts access points used in this assessment.

Figure 5.2.2 Study Area (Residential) Precincts Access Points

Source: Google

5.3 Trip Generation

5.3.1 High Density Residential Trip Generation

Summary trip generation rates for high density residential development are provided in the <u>GTGD Update</u>, and include a trip rate per unit, and a trip rate per parking spaces. These rates are summarised below: -

- Trip rates per unit
 - o 0.19 trips per unit in the AM peak hour
 - o 0.15 trips per unit in the PM peak hour

- Trip rates per parking space
 - 0.15 trips per unit in the AM peak hour
 - o 0.12 trips per unit in the PM peak hour

With reference to the JTW data detailed in **Section 2**, there is already a relatively low residential mode to car driver mode in the Study Area, and in our opinion the potential for an even higher use of non-car travel modes is excellent when considering proximity to Cabramatta Station, to bus interchanges, and to the Cabramatta Town Centre west of the railway line.

The <u>GTGD Update</u> summary rates are based on survey sites generally within broader regional and sub-regional centres which report slightly higher non-car mode for the journey to work; however, with the introduction of additional retail and commercial space, and again the connectively to the broader Sydney Metropolitan area, there is no reason to suggest that similar levels of non-car mode cannot be achieved.

With reference to **Section 5.8**, the potential for low trip generation is further enhanced by the provision of a restrictive parking policy, specifically using the 'maximum' parking rates provided for in the <u>CTC DCP</u> (for residential within the CTCP4) and the <u>GTGD</u> (cited in <u>SEPP 65/Apartment Design Guide</u>) for high density residential development within 800m of a railway station.

With specific recognition of the proposed parking reductions (and the influence reduced parking has on trip generation) ARC has applied the following rates to high density residential units within the Study Area, noting that these rates represent a 25% increase over the <u>GTGD Update</u> summary rates for high density residential trips per parking space: -

• Trip rates per parking spaces

- o 0.1875 trips per parking space in the AM peak hour
- o 0.15 trips per parking space in the PM peak hour

5.3.2 Medium Density Residential Trip Generation

While summary rates for medium density are not provided in the <u>GTGD Update</u>, ARC has reviewed the <u>Trip Generation</u> <u>Surveys Medium Density Residential Dwellings Analysis Report</u> (<u>GTGD Update: Medium Density</u>) prepared for the RMS in 2013. Reference to this report indicates similar summary rates to those provided in the earlier <u>GTGD</u> when non-Sydney region survey sites are included, but a more detailed review of survey sites within the Sydney region – and specifically those sites with high accessibility such as provided to the Study Area Precincts – indicate trip rates in many instances not dissimilar to high density rates.

Table 5.3.2 GTGD Update: Medium Density Medium Density Residential Trip Generation Summary

Table 3.7: Vehicle Trip Rate per dwelling Summary – Sydney (9 Sites)											
	Minimum	Maximum	Average								
Daily trips (6am – 7pm)	1.00	5.24	2.72								
Site Peak hour trips (within the period 6am – 7pm)	0.19	0.71	0.46								
Site AM peak hour (within the period 6am – 9am)	0.10	0.71	0.39								
Road network AM peak hour (within the period 6am – 9am)	0	0.71	0.27								
Site PM peak hour (within the period 4pm – 7pm)	0.10	0.67	0.37								
Road network PM peak hour (within the period 4pm – 7pm)	0.06	0.67	0.31								

Source: GTGD Update: Medium Density

Further to consideration of both Sydney and regional survey data in providing 'base rates' for application, <u>the GTGD Update:</u> <u>Medium Density</u> provides the following summary rates: -

- 0.4 trips per dwelling in the AM Peak
- 0.48 trips per dwelling in the PM Peak

These rates have been adopted for the assessment, noting that they represent rates approximately 50% higher than the average Sydney rates.

5.3.3 Retail Trip Generation

As discussed in **Section 2.4.1**, the <u>GTGD</u> and <u>GTGD Update</u> trip generation rates for retail development (shopping centres) are not applicable to CTCP4 for a number of reasons, including the proximity to public transport, proximity to the broader Cabramatta Town Centre, and the 'local' nature of retail in this area.

As detailed in **Section 2.4.1**, current retail premises across CTCP4 have a relatively low trip generation, particularly in the PM peak hour, but further to the Proposal (in particular) there is significant scope for not only additional retail space, but moreover the potential to rejuvenate the entire CTCP4 such that – simply – retail space will become more attractive and therefore generate additional trips.

Conversely, it is expected that the much of the retail space will be given over to local shops, restaurants and cafes, which would generate a higher proportion of walk (and public transport) trips than car trips, and there is no information to suggest the provision of 'fast trade' retail such as a full-line supermarket or the like.

Based on all available information, ARC has adopted the following retail trips rates for the assessment: -

- 1.0 trips per 100m² GLFA in the AM Peak
- 3.0 trips per 100m² GLFA in the PM Peak

These rates are commensurate with those provided (for retail) in the TIA 2013.

5.3.4 Commercial Trip Generation

Trip generation rates for commercial development are provided in the GTGD Update, and are summarised below: -

- 1.6 trips per 100m² GFA in the AM peak hour
- 1.2 trips per 100m² GFA in the AM peak hour

These are similar trip rates to those currently evidenced across CTCP4, though again in the PM peak the existing trip generation is estimated as being higher as a factor of local businesses with higher trip generation potential such as medical offices and the like. As such, to provide additional sensitivity in the assessment, ARC has adopted the following commercial trip rates which provide for potentially high business trip generation than currently generated, particularly in the PM peak hour: -

- 1.75 trips per 100m² GFA in the AM peak hour
- 1.6 trips per 100m² GFA in the AM peak hour

These rates represent an increase of some 10% and 25% over the <u>GTGD Update</u> commercial rates in the AM and PM peak period respectively.

5.3.5 Hotel

The preliminary Site plans indicate that the existing Stardust Hotel would be redeveloped within the Site but with a reduced floor-area. While there is little information to suggest that the existing trips rates (as detailed in **Section 2**) would not similarly apply to the future Hotel, the assessment provides for the following increased trip generation rates (which would essentially provide for the same trip generation as the existing Hotel): -

- 0.5 trips per 100m² GFA in the AM peak hour
- 3.0 trips per 100m² GFA in the AM peak hour

5.3.6 Church

Similarly, the preliminary Site plans indicate that the existing Anglican Church would be redeveloped within the Site but with a likely (moderate) increase in floor-area. There is no information to suggest that the existing trips rates (as detailed in **Section 2.1**) would not apply to the future Church, noting that regardless it is unlikely that any significant Church activities would be undertaken during the weekday AM and PM peak periods.

5.3.7 Fisher Street Car Park

As discussed previously, the potential exists for additional commuter parking to be provided within the Fisher Street Car Park (if redeveloped within the Site); however, for the purpose of this assessment the existing number of spaces (and more importantly the existing trip generation) has been considered.

5.3.8 Total Trip Generation

With reference to sections above, the tables below provide a summary of the forecast trip generation of the Site and broader Study Area Precincts, as well as the assigned arrival and departure distribution.

Table 5.3.8.1 Study Area Precincts AM Peak Hour Trip Generation Summary

Total	Preci	Preci	Preci	Preci	Preci	Preci	Preci	Preci	Preci	Preci	Fishe	Island	Tail	Site	Study Futur AM P	
	nct 25	nct 24	nct 23	nct 22	nct 21	nct 20	nct 19	nct 18	nct 17	nct 16	r CP	d			r Area Precincts e Trip Generation eak Hour	
2,445		123	177		283	206		868				23	116	619	Dwellings	High Density
2,350		130	188		300	250		952				16	81	433	DCP/GTGD	Parking Spaces
441		24	33		56	47		178				з	15	81	0.1875	AM Trips
8		ъ	7		E	9		36				1	ω	16	20%	z
352		20	28		4 5	37		143				2	12	65	80%	OUT
545	60	66				66			178	175					Dwellings	Medium Density
218	24	26				26			71	70					0.4	AM Trips
44	σ	л				5			14	14					20%	z
174	19	21				21			57	56					80%	оит с
60											60				Trips	ommuter
60											60				4	AM Trips
57											57				95%	z
3											3				5% 0	JUT
5,824												599	610	4,616	3LFA m ²	Retail
58												6	6	46	4	AM Trips
32												ω	ω	25	55% 4	z o
26												ω	ω	21	5% G	UT SIO
2,440													2,440		iLFA m ²	w Retail
6													6		0.25 8	AM Trips
σ													U.		30% 2	Z O
1													1		0%	ŪT Co
11,432												532	2,711	8,189	GFA m ²	mmercial
196												υ	47	143	1.75	AM Trips
147												4	36	107	75%	Z
49												4	12	36	25%	JUT
995														995	GFA m ²	Hotel
5														Ś	0.5	AM Trips
4														4	90%	Z
•														0	10%	OUT
60														60	Seats	Church
6														6	0.1	AM Trips
3														ω	50% 5	z
3														ω	%0%	
E 066	24	51	35		56	73		178	71	70	60	14	75	282 1		
088	5	10	7		H	15		36	14	14	57	8	47	57		Z
610	19	41	28		45	59		143	57	56	ω	6	28	125		DUT

Table 5.3.8.2 Study Area Precincts PM Peak Hour Trip Generation Summary

-	P	T	T	P	τ	T	P	7	T	T	70	Æ	-	s	Ŧ	F S
otal	recinct 25	recinct 24	recinct 23	recinct 22	recinct 21	recinct 20	recinct 19	recinct 18	recinct 17	recinct 16	isher CP	sland	ail	ite	M Peak Hour	itudy Area Precincts uture Trip Generation
2,445		123	177		283	206		898				23	116	619	Dwellings	High Density
2,350		130	188		300	250		952				16	81	433	DCP/GTGD	Parking Spaces
352		20	28		45	37		143				2	12	65	0.150	PM Trips
282		16	23		36	30		114				2	10	52	80%	IN
70		4	6		9	7		29				0	2	13	20%	OUT
545	60	66				66			178	175					Dwellings	Medium Density
262	29	32				32			85	84					0.48	PM Trips
209	23	25				25			8	67					80%	Z
52	6	6				6			17	17					20%	OUT
30											30				Trips	Commuter
30											30				1	PM Trips
ω											3				10%	Z
27											27				90%	DUT
5,824												599	610	4,616	GLFA m ²	Retail
175												18	18	138	3	PM Trips
87												9	9	69	50%	Z
87												9	9	69	50%	OUT S
2,440													2,440		GLFA m ²	ow Retail
27													27		1.1	PM Trips
11													11		40%	z
16													16		50%	рит са
11,432												532	2,711	8,189	GFA m ²	mmercial
180												G	43	131	1.6	PM Trips
45 1												1	11	33	25% 7	IN C
35												4	33	86	5% 0	Ē
995														995	äFA m ²	Hotel
30														30	3 8	PM Trips
24														24	20%	0
6														6	0%	Ч О
60														60	Seats	hurch 1
6														6	0.1 5	PM 'rips
ω											_			3	.0% 5(N Q
3 1,							_	1	_	_				3	0%	
061 66	29 2	51 4	28 2		45 3	69 S		43 11	85 6	84 6	с 06	26 1	01 4	170 18		
4 397	3 6	1 10	3 6		6 9	5 14		14 29	8 17	7 17	3 27	2 13	0 60	31 189		e P
1																-

5.4 Trip Distribution

5.4.1 Origin & Destination Distribution

There is no information to suggest any significant changes in origin/destination distribution further to the Proposal (or broader uplift within the Study Area Precincts) from that assigned to existing trips as detailed in **Table 2.5.1**. The only difference would be that the high density residential dwellings proposed across the CTCP4 sites would have the same distribution characteristics as the other Study Area (Residential) Precincts.

It is again noted that a percentage of trips distributed to both Cabramatta Road West and Bareena Street would essentially comprise local trips to the Cabramatta Town Centre west of the railway.

5.4.2 Arrival & Departure Distribution

The assigned arrival and departure trip distribution in both peak periods are shown in **Table 5.3.8.1** (AM Peak) and **Table 5.3.8.2** (PM Peak) above. It is noted that both the retail and commercial arrival and departure distribution profiles reflect the observed localised nature of these components.

5.5 Trip Assignment

The peak period trip generation as determined in **Section 5.3** has been assigned to the road network with regard to the trip distribution profiles outlined in **Section 5.4**.

The assignment again references the existing distribution patterns based on our observations through the local area; the existing distribution of trips at key intersections (as detailed in **Section 2** below); and trip time estimates (to/from key external origins/destinations). The assignment also accounts for the proposed vehicular access points as described in **Section 5.2**.

The resulting future trips generated by the Proposal alone, and by uplift across all Study Area Precincts, are shown in the figures below, noting that these figures do not account for the removal of existing flows as detailed in **Section 2.6**.

Figure 5.5.1 Planning Proposal Site AM Peak Hour Future Trips

Figure 5.5.2 Planning Proposal Site PM Peak Hour Future Trips

Figure 5.5.3 All Study Area Precincts AM Peak Hour Future Trips

Figure 5.5.4 All Study Area Precincts PM Peak Hour Future Trips

5.6 Future Total Flows

5.6.1 Future Total Flows – Planning Proposal Only

The future total (2031) road network flows further to the Proposal only, i.e. with no additional uplift across other Study Area Precincts, are shown in **Figure 5.6.1.1** (AM Peak Hour) and **Figure 5.6.1.2** (PM Peak Hour); these total flows account for the removal of the existing Site flows as detailed in **Section 2.6**.

5.6.2 Future Total Flows – All Study Area Precincts

The future total (2031) road network flows further to the Proposal and uplift across all Study Area Precincts are shown in **Figure 5.6.2.1** (AM Peak Hour) and **Figure 5.6.2.2** (PM Peak Hour); these total flows account for the removal of the existing Study Area Precinct flows as detailed in **Section 2.6**.

Figure 5.6.1.1 Planning Proposal Only 2031 AM Peak Hour Total Flows

Figure 5.6.1.2 Planning Proposal Only 2031 PM Peak Hour Total Flows

Figure 5.6.2.1 All Study Area Precinct 2031 AM Peak Hour Total Flows

Figure 5.6.2.2 All Study Area Precinct 2031 PM Peak Hour Total Flows

5.7 Future Intersection Operations

5.7.1 Future Intersection Operations – Planning Proposal

The operation of all key intersections further to the Proposal alone has been assessed using the SIDRA model. The results of this analysis are provided in **Table 5.7.1** below.

Table 5.7.1 2031 Planning Proposal Only Intersection Operations

2031 + Planning Proposal Only	Level of	Service	Average	Delay (s)	Degree of Saturation		
	AM	PM	AM	PM	AM	PM	
Hume & Lansdowne	В	В	18.9	19.5	0.724	0.816	
Hume & Hollywood & Chadderton	С	E	35.5	57.8	0.896	0.990	
Hume & Hollywood & Chadderton Upgrade	С	В	33.5	27.8	0.896	0.755	
Hume & Cabramatta East	С	с	31.5	34.3	0.797	0.877	
Cabramatta East & Cumberland	В	В	16.4	20.7	0.559	0.699	
Cabramatta East & Cabramatta East	С	В	2.0	1.8	0.474	0.400	
Cabramatta East & Broomfield	В	В	16.9	17.9	0.275	0.336	
Cumberland & Longfield	В	В	14.8	16.1	0.241	0.298	
Broomfield & Longfield	А	А	3.5	4.0	0.234	0.282	
Broomfield & Bareena	А	А	7.6	9.3	0.531	0.695	

With reference to Table 5.7.1: -

5.7.1.1 Hume Highway & Lansdowne Road

The intersection of Hume Highway & Lansdowne Road continues to operate at an acceptable LoS in both peaks, with moderate delays and spare capacity. The Proposal in and of itself has little impact on the operation of the intersection when compared to base 2031 operations.

5.7.1.2 Hume Highway & Hollywood Drive & Chadderton Street

Further to the potential intersection upgrade detailed in **Section 4.6.2.2** the intersection of Hume Highway & Hollywood Drive & Chadderton Street operates at an acceptable LoS in both peaks, with moderate delays and spare capacity. The Proposal in and of itself has little impact on the operation of the intersection when compared to base 2031 operations.

5.7.1.3 Hume Highway & Cabramatta Road East

The intersection of Hume Highway & Cabramatta Road East continues to operate at an acceptable LoS in both peaks, with moderate delays and spare capacity. The Proposal in and of itself has little impact on the operation of the intersection when compared to base 2031 operations.

It is noted that the Cabramatta Road East approach currently provides a left turn lane, shared left and right turn lane, and a short right turn lane. Clearway conditions are in place in the AM peak only. Sensitivity testing undertaken by ARC and PDC Consulting indicates that extending the current clearway provisions to the PM peak and reassigning existing lanes to instead provide a short left, (clearway extended) shared left and right, and full right turn lanes provides capacity and (reduced) delay benefits under all future scenarios.

5.7.1.4 Cabramatta Road East & Cumberland Street

The intersection of Cabramatta Road East & Cumberland Street operates at a good LoS, with moderate delays and spare capacity in both the AM and PM peaks. The Proposal in and of itself has little impact on the operation of the intersection when compared to base 2031 operations.

5.7.1.5 Local Intersections

The majority of other local signalised, roundabout and priority intersection operate at a good LoS, with moderate delays and significant spare capacity in both the AM and PM peaks. Notwithstanding: -

- At the priority intersection of Cabramatta Road East & Cabramatta Road East, delays to the right turn movement from north to west increase in both peak hour under all future scenarios, though LoS remains acceptable and there are queuing issues (back in Cabramatta Road East towards Broomfield Street). However, the removal of the right turn provision may warrant consideration in the future as part of broader changes, noting that sensitivity testing indicates that the redistribution of these (minor number of trips) could be accommodated by the adjacent intersection of Cabramatta Road East & Cumberland Street.
- Site trips are expected to be distributed to/from access points to Fisher Street, providing for the removal of existing Site vehicle access points to Broomfield Street and potentially the removal of the existing vehicle access points to Cabramatta Road East. Sensitivity testing indicates that the redistribution of trips assigned (as departure trips) to Cabramatta Road East to the intersection of Cabramatta Road East & Cumberland Street would have no impact on the (good) performance of the Cabramatta Road East & Cumberland Street intersection through all future scenarios.
- The priority intersections of Broomfield Street & Fisher Street, and Cumberland Street & Fisher Street, are forecast to continue operating at a good LoS, though additional No Standing restrictions (on the Fisher Street approaches to each intersection and adjacent to Site access points) may be warranted.
- Future detailed planning will be required to determine the safest and efficient access strategy for Fisher Street.

5.7.2 Future Intersection Operations – Proposal & All Study Area Precincts

The operation of all key intersections further to the Proposal uplift across all Study Area Precincts has been assessed using the SIDRA model. The results of this analysis are provided in **Table 5.7.2** below.

2031 + Planning Proposal + All Study Area Precincts	Level of	f Service	Average	Delay (s)	Degree of Saturation		
Intersection Operations	AM	PM	AM	PM	AM	PM	
Hume & Lansdowne	В	В	19.0	19.9	0.727	0.827	
Hume & Hollywood & Chadderton	С	E	39.0	65.9	0.912	1.004	
Hume & Hollywood & Chadderton Upgrade	С	В	36.8	27.9	0.912	0.755	
Hume & Cabramatta East	С	С	33.3	35.1	0.824	0.894	
Cabramatta East & Cumberland	В	В	17.4	21.0	0.575	0.723	
Cabramatta East & Cabramatta East	С	В	2.00	1.9	0.471	0.423	
Cabramatta East & Broomfield	В	В	16.5	17.5	0.277	0.353	
Cumberland & Longfield	В	В	15.3	15.7	0.266	0.358	
Broomfield & Longfield	А	А	3.7	4.0	0.266	0.296	
Broomfield & Bareena	A	А	8.1	9.8	0.601	0.713	

Table 5.7.2 2031 Proposal & All Study Area Precincts Intersection Operations

With reference to Table 5.7.2: -

5.7.2.1 Hume Highway & Lansdowne Road

The intersection of Hume Highway & Lansdowne Road continues to operate at an acceptable LoS in both peaks, with moderate delays and spare capacity. Uplift across all Study Area Precincts has little impact on the operation of the intersection when compared to base 2031 operations.

5.7.2.2 Hume Highway & Hollywood Drive & Chadderton Street

Further to the potential intersection upgrade detailed in **Section 4.6.2.2** the intersection of Hume Highway & Hollywood Drive & Chadderton Street operates at an acceptable LoS in both peaks, with moderate delays and spare capacity. Uplift across all Study Area Precincts has little impact on the operation of the intersection when compared to base 2031 operations.

5.7.2.3 Hume Highway & Cabramatta Road East

The intersection of Hume Highway & Cabramatta Road East continues to operate at an acceptable LoS in both peaks, with moderate delays and spare capacity. Uplift across all Study Area Precincts has little impact on the operation of the intersection when compared to base 2031 operations.
It is noted that sensitivity testing of the potential revisions to the approach lanes in Cabramatta Road East (as described in **Section 5.7.1.3**) further to uplift across all Study Area Precincts indicates similar benefits to delay and capacity as those determined further to the Proposal alone.

5.7.2.4 Cabramatta Road East & Cumberland Street

The intersection of Cabramatta Road East & Cumberland Street operates at a good LoS, with moderate delays and spare capacity in both the AM and PM peaks. Uplift across all Study Area Precincts has little impact on the operation of the intersection when compared to base 2031 operations.

5.7.2.5 Local Intersections

The majority of other local signalised, roundabout and priority intersection operate at a good LoS, with moderate delays and significant spare capacity in both the AM and PM peaks. Notwithstanding, the comments provided in **Section 5.7.1.5** above in regard to the intersections of Cabramatta Road East & Cabramatta Road East, Broomfield Street & Fisher Street and Cumberland Street & Fisher Street under Proposal only future conditions apply equally further to uplift across all Study Area Precincts.

5.8 Parking

5.8.1 <u>CTC DCP</u> High Density Residential Parking Rates

The <u>CTC DCP</u> provides significantly reduced parking rates for high density residential development within CTCP4 (and indeed across the CTC) which appropriately responds to the availability of public transport and proximity to the CTC itself.

The CTC DCP provides the following parking requirements: -

- Dwelling under 70m² (one-bedroom) 0.5 spaces per dwelling
 - Dwelling 75m² to 100m² (two-bedroom) 0.75 spaces per dwelling
- Dwelling over 100m² (three-bedroom)
 1 space per dwelling

ARC recommends that these parking rates apply to all future residential dwellings within CTCP4, i.e. to the Site, the Tail and the Island.

5.8.2 <u>GTGD</u> High Density Residential Parking Rates

<u>SEPP 65</u> (and in turn the <u>Apartment Design Guide</u>) provides for parking for high density residential development within 800m of a railway station to be provided in accordance with the <u>GTGD</u> (high density residential) parking rates.

In this regard, the <u>GTGD</u> provides two sets of parking rates, being for regional centres and for sub-regional centres, which are: -

• Regional Centre

- 0.4 spaces per one-bedroom dwelling
- 0.7 spaces per two-bedroom dwelling
- 1.2 spaces per three-bedroom dwelling
- 1 visitor space per 7 dwellings

• Sub-Regional Centre

- 0.6 spaces per one-bedroom dwelling
- \circ 0.9 spaces per two-bedroom dwelling
- 1.4 spaces per three-bedroom dwelling
- 1 visitor space per 5 dwellings

The GTGD Regional rates generally are equivalent (across a mixed size unit) development with the CTC DCP rates.

It is our opinion that the provision of the <u>CTC DCP</u> rates to key residential Precincts – and specifically those precincts within 800m of Cabramatta Station – is realistic; indeed, the distance to Cabramatta Station from, for example, Precinct 18 or Precinct 23 is not significantly different from (the eastern portion of) the Tail, to which the <u>CTC DCP</u> rates apply. As a maximum, ARC would recommend the application of the <u>GTGD</u> Sub-Regional rates (which as stated are essentially provided for regardless under *SEPP 65*) to all future high density residential dwellings across the Study Area (Residential) Precincts.

5.8.2 Medium Density Residential Parking Rates

The <u>FCW DCP</u> provides the following parking rates for medium density residential dwellings outside of 400m from a railway station, noting that all of the Study Area (Residential) Precincts in which medium density development is forecast are outside of this limit (though within 800m): -

- 1 spaces per one or two-bedroom dwelling
- 2 spaces per three-bedroom dwelling
- 1 visitor space per 4 dwellings

ARC recommends that these parking rates be applied as maximum rates to medium density residential dwellings within the Study Area, noting that they are similar to the medium density residential parking rates provided in the <u>GTGD</u>.

5.8.3 Retail and Commercial Parking

The CTC DCP provides the following parking rates for commercial and retail development within CTCP4: -

• Commercial

- 1 space per 25m² GLFA at ground floor level
- 1 space per 40m² GLFA above ground floor level
- Retail (including general retail, cafes, restaurants etc)
 - 1 space per 25m² GLFA
- Bulky Goods Retail
 - 1 space per 40m² GLFA

Importantly, the CTC DCP also provides the following caveats in regard to parking: -

Note: 1. Where contributions are paid to a centralised car park (in lieu of onsite parking) the above parking requirements may be reduced by 40%.

Note: 2. Car parking requirements for developments with significant cultural, recreational or entertainment uses will be reduced by a total of 70% of that required by the Chapter 12 – Car Parking, Vehicle and Access Management of this [Citywide] DCP.

With regard to *Note 1*, the Planning Proposal includes the (redeveloped) Fisher Street Car Park, or more specifically would provide general public parking (available for both short term visitors and commuters) on-site. As such, there is certainly the potential for shared-use of the parking, as many of the peak parking demand periods do not overlap; for example, residential visitor and restaurant demand periods would generally occur outside of commuter peak period demand periods. As such, the provisions in the <u>CTC DCP</u> for a parking reduction (to the retail and commercial parking requirements) could certainly in our opinion be applied to the Site, and indeed to the Tail site (if public parking was to be made available as it currently is).

With regard to *Note 2*, the relative merits of the Site (or broader development within CTCP4) to provide recreational or entertainment uses will require more detailed assessment as part of future Development Applications. Notwithstanding, ARC would suggest there is significant merit in providing a reduction in parking if – for example – significant 'retail' space is in fact given over to restaurants and cafes such as would generate a high percentage of pedestrian traffic rather than vehicular traffic.

6 <u>Conclusions</u>

Further to our assessment of the Planning Proposal, and of the broader uplift across CTCP4 and in the surrounding residential Precincts, ARC has determined the existing road network can accommodate the additional trip generation arising from the Planning Proposal and broader uplift without being significantly impacted.

6.1 Public & Active Transport

The Site and broader Study Area Precincts have excellent accessibility to public transport (including rail and bus services) as well as to a range of education, retail, commercial and recreational services within the broader Cabramatta Town Centre.

The Site and broader Study Area Precincts have excellent pedestrian and cycle infrastructure available, including access to the regional Parramatta to Liverpool 'Rail Trail' which runs directly adjacent to the Site in Broomfield Street; and pedestrian connections not only to public transport but also to the Cabramatta Town Centre itself, which would potentially be further enhanced by the provision of a pedestrian overbridge from the Site linking to the Cabramatta Station pedestrian overbridge.

The combination of public transport, pedestrian and cycle access/infrastructure provides significant potential for a reduction in (vehicle) trip generation, building on the existing low mode to car driver percentages evident in the Study Area.

6.2 Future Intersection Operations

6.2.1 2031 Base Flows (No Proposal or Uplift in Study Area Precincts)

By 2031 the intersection of Hume Highway & Hollywood Drive & Chadderton Street operates near capacity, i.e. with a Degree of Saturation (DoS) approaching 1, and Level of Service (LoS) 'D' in the PM peak hour.

All other key intersections continue to operate at an acceptable Level of Service, with moderate average delays and spare capacity.

6.2.2 2031 Plus Proposal Only

The additional trip generation arising from the Proposal alone has a very moderate impact on the future operation of the key intersections. All key intersections along the Hume Highway and Cabramatta Road East continue to operate at with acceptable delay and spare capacity other than the intersection of Hume Highway & Hollywood Drive & Chadderton Street, where the existing capacity constraints are further exacerbated even by these very moderate additional flows.

This results in the Hume Highway & Hollywood Drive & Chadderton Street intersection operating essentially at capacity, and at LoS 'E' in the PM peak hour.

All local intersections continue to operate at an acceptable level of service, with moderate average delays and spare capacity.

6.2.3 2031 Plus Proposal and Uplift in Study Area Precincts

The additional trip generation arising from the Proposal and uplift in the Study Area Precincts has a moderate impact on the future operation of the key intersections. All key intersections along the Hume Highway and Cabramatta Road East continue to operate at with acceptable delay and spare capacity other than the intersection of Hume Highway & Hollywood Drive & Chadderton Street by 2031, where the existing capacity constraints are further exacerbated even by these moderate additional flows. This results in the Hume Highway & Hollywood Drive & Chadderton Street intersection operating over capacity, and at LoS 'E' in the PM peak hour.

All local intersections continue to operate at an acceptable level of service, with moderate average delays and spare capacity.

6.3 Intersection Upgrades

At the intersection of the Hume Highway & Hollywood Drive & Chadderton Street, the Hume Highway kerbside southbound lane is currently dedicated as a left turn lane. Reassigning this lane as a shared through/left lane – specifically given the existing availability of a third departure lane in the Hume Highway south of Hollywood Drive – provides significant capacity benefits with no significant upgrade costs. Further to this upgrade, the intersection would operate at an appropriate Level of Service and with spare capacity through all future scenarios.

It is our understanding that an all but identical upgrade for the intersection was examined as part of a recent Planning Proposal for a mixed-use development in Chadderton Street (recently approved for determination by Council) and further that the RMS has previously provided support for this upgrade. Certainly, our assessment supports what would be a relatively minor upgrade providing significant capacity and delay benefits through all future scenarios.

At the intersection of Hume Highway & Cabramatta Road East, the Cabramatta Road East approach currently provides a left turn lane, shared left and right turn lane, and a short right turn lane. Clearway conditions are in place in the AM peak only. Sensitivity testing indicates that extending the current clearway provisions to the PM peak and reassigning existing lanes to instead provide a short left, (clearway extended) shared left and right, and full right turn lanes provides capacity and (reduced) delay benefits through all future scenarios.

At the priority intersection of Cabramatta Road East & Cabramatta Road East, delays to the right turn movement from north to west increase under all future scenarios, though LoS remains acceptable and there are no queuing issues (back in Cabramatta Road East towards Broomfield Street). Notwithstanding, the removal of the right turn provision may warrant consideration in the future, noting that sensitivity testing indicates that the redistribution of these (minor number of trips) could be accommodated by adjacent intersections.

Site trips are expected to be distributed to/from access points to Fisher Street, providing for the removal of existing Site vehicle access points to Broomfield Street (and potentially the removal also of the existing vehicle access points to Cabramatta Road East). The priority intersections of Broomfield Street & Fisher Street, and Cumberland Street & Fisher Street, and forecast to continue operating at a good LoS. Future detailed planning will be required to determine the safest and efficient access strategy for Fisher Street.

6.4 Parking

The <u>CTC DCP</u> already provides what ARC would consider appropriate and sustainable parking provisions which appropriately respond to the proximity of the Site (and adjacent CTCP4 sites) to Cabramatta Station, the bus interchange and of course to the Cabramatta Town Centre west of the railway line.

ARC would recommend that these parking rates are applied to all future development within the CTCP4, noting that these low maximum rates provide significant benefits with regard to residential vehicle trip reduction. There is also the opportunity to reduce parking further to future detailed assessments of the complementary peak demands for retail, commercial and commuter parking across the Site.

The <u>FCW DCP</u> prescribes much higher residential parking rates for areas outside of the Cabramatta Town Centre Precincts (as described in the <u>CTC DCP</u>), even where those (surrounding) Precincts lie within 800m of Cabramatta Station. While it is our opinion that the <u>CTC DCP</u> rates would be appropriate for application to all high density residential development within 800m of Cabramatta Station, ARC would recommend as a minimum the adoption of the RMS <u>Guide to Traffic Generating</u> <u>Development (GTGD)</u> high density residential parking rates to all future high density within 800m of Cabramatta Station, noting that this would be consistent with *SEPP 65* (and by association the Department of Planning & Environment's <u>Apartment Design Guide</u>) provisions.

In addition, ARC would recommend the adoption of the <u>GTGD</u> medium density parking rates to all future medium density within 800m of Cabramatta Station.

PDC Consultants 3/495 Bronte Rd Bronte NSW 2024 T: +61 2 7900 6514 ABN: 70 615 064 670

Ref: 17.038r01v04

20/06/2017

Anton Reisch Consulting 19 Canoon Road Turramura NSW 2074

Attention: Anton Reisch

RE: Cabramatta East SIDRA Modelling

Dear Anton,

We refer to recent correspondence concerning the subject Cabramatta East SIDRA modelling which, as instructed by ARC, includes the following intersections:

- Hume Highway and Lansdowne Road
- Hume Highway, Hollywood Drive and Chadderton Street
- Hume Highway and Cabramatta Road East
- Cabramatta Road East and Cumberland Street

Additionally, the SIDRA modelling of the above intersections was required for each of the below scenarios:

- Existing (Year 2016)
- Existing plus 15-year background growth (Year 2031)
- Existing plus 15-year background growth plus Planning Proposal plus All Precincts (Year 2031 + PP + Precincts)
- Existing plus 15-year background growth plus Planning Proposal Only (Year 2031 + PP Only)

Having regarding for the above, we note that SIDRA modelling has been undertaken based on traffic flows provided by ARC, with the Existing (Year 2016) base models calibrated to observed morning and evening peak period traffic conditions.

The detailed SIDRA output results are provided in **Attachment 1**, with a summary of intersection performances presented in **Table 1** overleaf.

INTERSECTION	PERIOD	SCENARIO	DEGREE OF	AVERAGE DELAY	LEVEL OF SERVICE
		Vear 2016	0.617	18 1	P
		Voar 2021	0.017	10.1	
	AM		0.720	10.0	
		Year 2031 + PP + Precincts	0.727	19.0	в
Hume Hwy / Lansdowne Rd		Year 2031 + PP Only	0.724	18.9	В
		Year 2016	0.752	18.2	в
	PM	Year 2031	0.811	19.2	В
		Year 2031 + PP + Precincts	0.827	19.9	В
		Year 2031 + PP Only	0.816	19.5	В
		Year 2016	0.787	26.3	В
	AM	Year 2031	0.894	36.7	С
		Year 2031 + PP + Precincts	0.912	39.0	с
Hume Hwy / Hollywood Dr		Year 2031 + PP Only	0.896	35.5	С
/ Chadderton St		Year 2016	0.897	28.7	с
	PM	Year 2031	0.986	54.7	D
		Year 2031 + PP + Precincts	1.004	65.9	E
		Year 2031 + PP Only	0.990	57.8	E
		Year 2016	0.659	29.0	С
		Year 2031	0.780	30.8	с
	AM	Year 2031 + PP + Precincts	0.824	33.3	С
Hume Hwy / Cabramatta		Year 2031 + PP Only	0.797	31.5	С
Rd East		Year 2016	0.751	29.9	С
		Year 2031	0.854	32.9	С
	PM	Year 2031 + PP + Precincts	0.894	35.1	С
		Year 2031 + PP Only	0.877	34.3	С
		Year 2016	0.577	18.1	В
		Year 2031	0.555	16.3	В
	AM	Year 2031 + PP + Precincts	0.575	17.4	В
		Year 2031 + PP Only	0.559	16.4	В
Cumberland St		Year 2016	0.645	20.0	В
		Year 2031	0.684	19.6	в
	PM	Year 2031 + PP + Precincts	0.723	21.0	в
		Year 2031 + PP Only	0 699	20.7	R
			0.055	20.7	U

Table 1: Summary of SIDRA Results

It is evident from the above that the Hume Highway / Lansdowne Road, Hume Highway / Cabramatta Road East and Cabramatta Road East / Cumberland Street intersections will all operate with acceptable delays and degree of saturation, with a Level of Service B or C under all scenarios tested.

The Hume Highway / Hollywood Drive / Chadderton Street intersection will however experience a substantial increase in delays, with the Level of Service worsening from C to E, during the critical PM peak period. This intersection will also operate over-capacity (i.e. with a degree of saturation of greater than 1.0) under the 'PM Peak, Year 2031 plus Planning Proposal plus All Precincts' scenario. Notwithstanding, a potential upgrade option has been identified for this intersection, with the aim of improving performance. This upgrade option would involve the below amendments to the westbound traffic lanes of Hume Highway:

- Conversion of the 'left-turn only' approach lane into a 'through and left-turn' lane, and
- An increase in the number of departure lanes from 2 to 3 lanes.

The above upgrades were modelled in SIDRA to assess what impact these amendments would have on the intersection performance. A summary of the SIDRA results is presented in **Table 2** below, with the detailed SIDRA outputs provided in **Attachment 1**.

INTERSECTION	PERIOD	SCENARIO	DEGREE OF SATURATION	AVERAGE DELAY (secs)	LEVEL OF SERVICE
		Year 2016 w/ Upgrade	0.787	25.2	В
	AM	Year 2031 w/ Upgrade	0.894	34.4	С
		Year 2031 + PP + Precincts w/ Upgrade	0.912	36.8	С
Hume Hwy / Hollywood		Year 2031 + PP Only w/ Upgrade	0.896	33.5	С
Dr / Chadderton St	PM	Year 2016 w/ Upgrade	0.666	26.1	В
		Year 2031 w/ Upgrade	0.755	27.7	В
		Year 2031 + PP + Precincts w/ Upgrade	0.755	27.9	В
		Year 2031 + PP Only w/ Upgrade	0.755	27.8	В

Table 2: Summary of SIDRA Results – Upgrade Option Testing

By comparing the Hume Hwy / Hollywood Dr / Chadderton St intersection results from **Table 1** and **Table 2**, it is evident that implementation of the abovementioned amendments would result in a substantial improvement to the performance of this intersection. Indeed, only minor changes to the degree of saturation and delays would be experienced, whilst also maintaining an acceptable Level of Service B or C during all scenarios tested. Importantly, it is also evident that this intersection would operate with spare capacity under all scenarios.

Please contact the undersigned should you have any queries or require anything further.

Yours sincerely,

stell 5 <

Paul Corbett Director

Email: pcorbett@pdcconsultants.com.au

Attachments: 1) SIDRA Modelling Results

Attachment 1a

Hume Hwy / Lansdowne Rd SIDRA Results

Site: 1 [1. Hume Hwy x Lansdowne Rd - AM - Yr 2016]

Intersection: Hume Hwy x Lansdowne Rd

Period: AM Peak Scenario: Year 2016

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
East: H	ume Hwy											
5	T1	1589	8.0	0.599	5.1	LOS A	19.1	142.8	0.41	0.38	64.6	
6	R2	211	2.4	0.601	64.6	LOS E	9.9	70.8	0.97	0.80	33.4	
Approa	ch	1800	7.3	0.601	12.1	LOS A	19.1	142.8	0.47	0.43	58.0	
North: L	ansdown	e Rd										
7	L2	245	2.9	0.496	46.0	LOS D	13.1	93.7	0.86	0.80	37.9	
9	R2	103	4.2	0.603	70.2	LOS E	6.8	49.2	1.00	0.79	14.6	
Approa	ch	348	3.3	0.603	53.2	LOS D	13.1	93.7	0.90	0.80	31.8	
West: H	lume Hwy	,										
10	L2	122	4.1	0.617	23.5	LOS B	28.5	209.4	0.67	0.65	32.7	
11	T1	2019	6.2	0.617	17.0	LOS B	28.7	211.4	0.67	0.63	54.5	
Approa	ch	2141	6.1	0.617	17.4	LOS B	28.7	211.4	0.67	0.63	53.8	
All Vehi	cles	4289	6.4	0.617	18.1	LOS B	28.7	211.4	0.61	0.56	52.9	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedes	strians					Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped											
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96											
All Peo	destrians	20	61.7	LOS F			0.96	0.96											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:07:34 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [1. Hume Hwy x Lansdowne Rd - PM - Yr 2016]

Intersection: Hume Hwy x Lansdowne Rd Period: PM Peak Scenario: Year 2016

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay se <u>c</u>	Level of Service	95% Back Vehicles ve <u>h</u>	of Queue Distance m	Prop. Queued	Effective Stop Rate per v <u>eh</u>	Average Speed km/ <u>h</u>	
East: H	lume Hwy											
5	T1	2162	3.7	0.752	4.3	LOS A	28.7	207.3	0.45	0.43	65.4	
6	R2	399	2.5	0.614	51.2	LOS D	17.2	122.6	0.90	0.82	37.1	
Approa	ch	2561	3.5	0.752	11.6	LOS A	28.7	207.3	0.52	0.49	58.3	
North: Lansdow		e Rd										
7	L2	163	2.5	0.235	35.0	LOS C	7.2	51.7	0.72	0.75	41.8	
9	R2	62	1.6	0.662	77.8	LOS F	4.3	30.8	1.00	0.81	13.6	
Approa	ch	225	2.3	0.662	46.8	LOS D	7.2	51.7	0.80	0.76	34.0	
West: H	lume Hwy											
10	L2	76	3.9	0.631	29.9	LOS C	29.1	210.6	0.76	0.71	28.7	
11	T1	1848	4.0	0.631	23.4	LOS B	29.3	211.9	0.76	0.69	50.4	
Approa	ch	1924	4.0	0.631	23.7	LOS B	29.3	211.9	0.76	0.70	49.9	
All Veh	icles	4710	3.7	0.752	18.2	LOS B	29.3	211.9	0.63	0.59	53.1	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96				
All Peo	destrians	20	61.7	LOS F			0.96	0.96				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:07:36 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA Yr 2016.sip7

Site: 1 [1. Hume Hwy x Lansdowne Rd - AM - 2031 Base]

Intersection: Hume Hwy x Lansdowne Rd

Period: AM Peak

Scenario: Year 2031 Base

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
East: H	ume Hwy											
5	T1	1910	8.0	0.720	6.3	LOS A	28.3	212.0	0.50	0.47	63.4	
6	R2	227	2.4	0.680	66.7	LOS E	11.0	78.4	0.98	0.81	32.9	
Approa	ch	2137	7.4	0.720	12.7	LOS A	28.3	212.0	0.55	0.51	57.6	
North: Lansdow		e Rd										
7	L2	264	2.9	0.598	47.4	LOS D	14.4	103.5	0.88	0.81	37.4	
9	R2	122	4.2	0.714	72.4	LOS F	8.3	60.0	1.00	0.85	14.3	
Approa	ch	386	3.3	0.714	55.3	LOS D	14.4	103.5	0.92	0.82	30.9	
West: H	lume Hwy											
10	L2	133	4.1	0.667	23.8	LOS B	32.4	238.4	0.70	0.68	32.4	
11	T1	2209	6.2	0.667	17.4	LOS B	32.6	240.6	0.70	0.66	54.3	
Approa	ch	2342	6.1	0.667	17.7	LOS B	32.6	240.6	0.70	0.66	53.5	
All Vehi	cles	4865	6.4	0.720	18.5	LOS B	32.6	240.6	0.65	0.61	52.6	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96				
All Peo	destrians	20	61.7	LOS F			0.96	0.96				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:57:07 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [1. Hume Hwy x Lansdowne Rd - PM - 2031 Base]

Intersection: Hume Hwy x Lansdowne Rd

Period: PM Peak

Scenario: Year 2031 Base

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
East: H	ume Hw	y										
5	T1	2330	3.7	0.811	5.0	LOS A	35.9	259.5	0.53	0.50	64.7	
6	R2	430	2.5	0.681	52.8	LOS D	19.0	135.9	0.92	0.83	36.7	
Approa	ch	2760	3.5	0.811	12.5	LOS A	35.9	259.5	0.59	0.55	57.6	
North: Lansdow		ne Rd										
7	L2	184	2.5	0.271	36.2	LOS C	8.4	59.9	0.74	0.76	41.3	
9	R2	67	1.6	0.715	78.7	LOS F	4.7	33.6	1.00	0.84	13.5	
Approa	ch	251	2.3	0.715	47.5	LOS D	8.4	59.9	0.81	0.78	33.9	
West: H	lume Hw	′У										
10	L2	86	3.9	0.703	30.7	LOS C	34.7	250.9	0.80	0.75	28.2	
11	T1	2089	4.0	0.703	24.3	LOS B	34.9	252.5	0.80	0.74	49.9	
Approa	ch	2175	4.0	0.703	24.6	LOS B	34.9	252.5	0.80	0.74	49.4	
All Vehi	icles	5186	3.7	0.811	19.2	LOS B	35.9	259.5	0.69	0.64	52.5	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96				
All Peo	destrians	20	61.7	LOS F			0.96	0.96				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:57:08 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [1. Hume Hwy x Lansdowne Rd - AM - 2031 + PP + Precincts]

Intersection: Hume Hwy x Lansdowne Rd

Period: AM Peak

Scenario: Year 2031 + Planning Proposal + Precincts

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
East: H	ume Hwy												
5	T1	1929	8.0	0.727	6.4	LOS A	29.0	217.1	0.51	0.48	63.4		
6	R2	241	2.4	0.686	65.9	LOS E	11.6	83.0	0.98	0.82	33.1		
Approa	ch	2170	7.4	0.727	13.0	LOS A	29.0	217.1	0.56	0.52	57.3		
North: I	ansdowne	Rd											
7	L2	275	2.9	0.615	46.8	LOS D	15.0	107.3	0.88	0.81	37.6		
9	R2	122	4.2	0.714	72.4	LOS F	8.3	60.0	1.00	0.85	14.3		
Approa	ch	397	3.3	0.714	54.7	LOS D	15.0	107.3	0.92	0.82	31.2		
West: H	lume Hwy												
10	L2	129	4.1	0.674	24.5	LOS B	33.0	242.3	0.71	0.69	31.9		
11	T1	2208	6.2	0.674	18.1	LOS B	33.2	244.5	0.71	0.67	53.8		
Approa	ch	2337	6.1	0.674	18.4	LOS B	33.2	244.5	0.71	0.67	53.1		
All Vehi	icles	4904	6.4	0.727	19.0	LOS B	33.2	244.5	0.66	0.61	52.4		

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate					
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96					
All Peo	destrians	20	61.7	LOS F			0.96	0.96					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:39:02 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

Site: 1 [1. Hume Hwy x Lansdowne Rd - PM - 2031 + PP + Precincts]

Intersection: Hume Hwy x Lansdowne Rd

Period: PM Peak

Scenario: Year 2031 + Planning Proposal + Precincts

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: H	ume Hwy										
5	T1	2377	3.7	0.827	5.3	LOS A	38.4	277.2	0.55	0.53	64.4
6	R2	463	2.5	0.713	52.5	LOS D	20.6	147.3	0.93	0.83	36.7
Approa	ch	2840	3.5	0.827	13.0	LOS A	38.4	277.2	0.61	0.58	57.2
North: I	ansdown	e Rd									
7	L2	191	2.5	0.276	35.6	LOS C	8.6	61.7	0.74	0.76	41.6
9	R2	67	1.6	0.715	78.7	LOS F	4.7	33.6	1.00	0.84	13.5
Approa	ch	258	2.3	0.715	46.8	LOS D	8.6	61.7	0.81	0.78	34.3
West: H	lume Hwy										
10	L2	86	3.9	0.723	31.7	LOS C	36.0	260.8	0.82	0.77	27.6
11	T1	2119	4.0	0.723	25.3	LOS B	36.2	262.4	0.82	0.76	49.3
Approa	ch	2205	4.0	0.723	25.6	LOS B	36.2	262.4	0.82	0.76	48.8
All Vehi	cles	5303	3.6	0.827	19.9	LOS B	38.4	277.2	0.71	0.66	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pe	destrians						
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96
All Peo	destrians	20	61.7	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:39:03 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

Site: 1 [1. Hume Hwy x Lansdowne Rd - AM - 2031 + PP Only]

Intersection: Hume Hwy x Lansdowne Rd

Period: AM Peak

Scenario: Year 2031 + Planning Proposal Only

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: H	ume Hwy										
5	T1	1921	8.0	0.724	6.4	LOS A	28.7	215.0	0.51	0.48	63.4
6	R2	236	2.4	0.672	65.6	LOS E	11.3	80.8	0.98	0.81	33.1
Approa	ch	2157	7.4	0.724	12.8	LOS A	28.7	215.0	0.56	0.51	57.5
North: I	ansdowne	Rd									
7	L2	270	2.9	0.601	46.7	LOS D	14.6	105.0	0.88	0.81	37.6
9	R2	122	4.2	0.714	72.4	LOS F	8.3	60.0	1.00	0.85	14.3
Approa	ch	392	3.3	0.714	54.7	LOS D	14.6	105.0	0.92	0.82	31.1
West: H	lume Hwy										
10	L2	133	4.1	0.681	24.6	LOS B	33.5	246.6	0.72	0.69	31.8
11	T1	2228	6.2	0.681	18.2	LOS B	33.8	248.9	0.72	0.67	53.7
Approa	ch	2361	6.1	0.681	18.5	LOS B	33.8	248.9	0.72	0.67	53.0
All Vehi	cles	4910	6.4	0.724	18.9	LOS B	33.8	248.9	0.66	0.61	52.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - I	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96
All Peo	destrians	20	61.7	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Friday, June 16, 2017 9:49:41 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

Site: 1 [1. Hume Hwy x Lansdowne Rd - PM - 2031 + PP Only]

Intersection: Hume Hwy x Lansdowne Rd

Period: PM Peak

Scenario: Year 2031 + Planning Proposal Only

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: H	ume Hwy										
5	T1	2345	3.7	0.816	5.1	LOS A	36.7	264.9	0.53	0.51	64.6
6	R2	444	2.5	0.703	53.1	LOS D	19.8	141.3	0.93	0.83	36.6
Approa	ch	2789	3.5	0.816	12.7	LOS A	36.7	264.9	0.60	0.56	57.4
North: L	ansdowne	e Rd									
7	L2	190	2.5	0.280	36.3	LOS C	8.7	62.1	0.75	0.76	41.3
9	R2	67	1.6	0.715	78.7	LOS F	4.7	33.6	1.00	0.84	13.5
Approa	ch	257	2.3	0.715	47.4	LOS D	8.7	62.1	0.81	0.78	34.1
West: H	lume Hwy										
10	L2	86	3.9	0.710	30.9	LOS C	35.2	254.7	0.81	0.75	28.1
11	T1	2109	4.0	0.710	24.5	LOS B	35.4	256.2	0.81	0.74	49.8
Approa	ch	2195	4.0	0.710	24.7	LOS B	35.4	256.2	0.81	0.74	49.3
All Vehi	cles	5241	3.7	0.816	19.5	LOS B	36.7	264.9	0.69	0.65	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - I	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96
All Peo	destrians	20	61.7	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Friday, June 16, 2017 9:49:43 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

Attachment 1b

Hume Hwy / Hollywood Dr / Chadderton St SIDRA Results

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - AM - Yr 2016]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: AM Peak Scenario: Year 2016

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hollywoo	d Dr									
1	L2	61	5.0	0.157	47.6	LOS D	3.5	25.4	0.82	0.73	29.6
2	T1	33	5.0	0.787	61.0	LOS E	12.2	88.8	0.97	0.89	23.5
3	R2	150	5.0	0.787	69.9	LOS E	12.2	88.8	1.00	0.92	16.6
Approa	ach	244	5.0	0.787	63.1	LOS E	12.2	88.8	0.95	0.87	20.8
East: F	lume Hwy	/									
4	L2	42	5.0	0.037	15.9	LOS B	1.0	7.3	0.39	0.67	36.1
5	T1	1548	8.0	0.688	15.6	LOS B	31.6	236.1	0.67	0.62	48.9
6	R2	53	5.0	0.184	59.5	LOS E	3.0	22.2	0.90	0.75	23.5
Approa	ach	1643	7.8	0.688	17.1	LOS B	31.6	236.1	0.67	0.62	47.0
North:	Chaddert	on St									
7	L2	36	5.0	0.052	32.0	LOS C	1.5	10.6	0.66	0.68	30.5
8	T1	33	5.0	0.220	53.6	LOS D	3.3	24.1	0.91	0.72	25.5
9	R2	24	5.0	0.220	58.1	LOS E	3.3	24.1	0.91	0.72	30.4
Approa	ach	93	5.0	0.220	46.4	LOS D	3.3	24.1	0.81	0.70	28.5
West:	Hume Hw	У									
10	L2	28	5.0	0.785	33.9	LOS C	36.1	264.7	0.87	0.80	40.5
11	T1	1997	5.5	0.785	27.1	LOS B	36.2	265.3	0.86	0.79	40.0
12	R2	48	5.0	0.612	80.6	LOS F	3.4	24.6	1.00	0.77	22.8
Approach		2073	5.5	0.785	28.5	LOS B	36.2	265.3	0.87	0.79	39.2
All Veh	icles	4053	6.4	0.787	26.3	LOS B	36.2	265.3	0.79	0.73	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	20	12.5	LOS B	0.0	0.0	0.43	0.43
P4	West Full Crossing	20	58.8	LOS E	0.1	0.1	0.93	0.93
All Peo	lestrians	40	35.7	LOS D			0.68	0.68

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:40:35 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - PM - Yr 2016]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: PM Peak Scenario: Year 2016

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hollywoo	od Dr									
1	L2	68	7.4	0.179	49.6	LOS D	4.0	29.9	0.83	0.74	28.8
2	T1	40	5.0	0.893	73.8	LOS F	15.4	110.8	0.97	1.01	21.3
3	R2	160	3.1	0.893	84.1	LOS F	15.4	110.8	1.00	1.06	14.6
Approa	ach	268	4.5	0.893	73.8	LOS F	15.4	110.8	0.95	0.97	19.0
East: F	lume Hw	у									
4	L2	24	4.2	0.021	15.8	LOS B	0.6	4.2	0.38	0.66	36.2
5	T1	2111	3.9	0.897	26.9	LOS B	64.3	464.9	0.88	0.86	40.2
6	R2	61	4.9	0.284	68.1	LOS E	3.9	28.2	0.95	0.76	21.8
Approa	ach	2196	3.9	0.897	28.0	LOS B	64.3	464.9	0.87	0.86	39.2
North:	Chaddert	ton St									
7	L2	49	4.1	0.079	37.4	LOS C	2.2	16.1	0.71	0.70	28.6
8	T1	27	11.1	0.224	56.4	LOS D	3.2	24.0	0.91	0.72	24.8
9	R2	26	3.8	0.224	60.9	LOS E	3.2	24.0	0.91	0.72	29.7
Approa	ach	102	5.9	0.224	48.4	LOS D	3.2	24.0	0.81	0.71	27.8
West:	Hume Hw	/y									
10	L2	30	3.3	0.568	26.5	LOS B	25.7	186.2	0.69	0.63	44.0
11	T1	1737	4.0	0.568	19.8	LOS B	25.8	186.7	0.68	0.62	45.2
12	R2	55	5.5	0.729	85.2	LOS F	4.1	29.9	1.00	0.82	22.0
Approa	ach	1822	4.0	0.729	21.9	LOS B	25.8	186.7	0.69	0.62	43.6
All Veh	icles	4388	4.1	0.897	28.7	LOS C	64.3	464.9	0.80	0.76	38.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	20	12.4	LOS B	0.0	0.0	0.42	0.42
P4	West Full Crossing	20	60.4	LOS F	0.1	0.1	0.93	0.93
All Peo	lestrians	40	36.4	LOS D			0.68	0.68

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:07:40 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - AM - 2031 Base]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: AM Peak

Scenario: Year 2031 Base

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hollywo	od Dr									
1	L2	74	5.0	0.171	45.3	LOS D	4.1	29.6	0.81	0.73	30.2
2	T1	33	5.0	0.857	65.2	LOS E	13.9	101.8	0.96	0.95	22.7
3	R2	164	5.0	0.857	76.0	LOS F	13.9	101.8	1.00	1.00	15.7
Approa	ach	271	5.0	0.857	66.3	LOS E	13.9	101.8	0.94	0.92	20.3
East: H	Hume Hw	/y									
4	L2	42	5.0	0.039	17.1	LOS B	1.1	7.7	0.41	0.68	35.2
5	T1	1851	8.0	0.849	21.5	LOS B	47.2	353.2	0.83	0.78	44.0
6	R2	53	5.0	0.184	59.5	LOS E	3.0	22.2	0.90	0.75	23.5
Approa	ach	1946	7.9	0.849	22.5	LOS B	47.2	353.2	0.83	0.78	42.8
North:	Chadder	ton St									
7	L2	36	5.0	0.049	30.0	LOS C	1.4	10.2	0.63	0.67	31.3
8	T1	33	5.0	0.246	53.9	LOS D	3.6	26.4	0.91	0.73	25.4
9	R2	29	5.0	0.246	58.5	LOS E	3.6	26.4	0.91	0.73	30.3
Approa	ach	98	5.0	0.246	46.5	LOS D	3.6	26.4	0.81	0.71	28.8
West:	Hume Hv	vy									
10	L2	28	5.0	0.894	50.7	LOS D	51.5	377.7	0.98	0.99	34.2
11	T1	2184	5.5	0.894	44.2	LOS D	51.6	378.3	0.97	0.99	31.5
12	R2	48	5.0	0.612	80.6	LOS F	3.4	24.6	1.00	0.77	22.8
Approach		2260	5.5	0.894	45.0	LOS D	51.6	378.3	0.97	0.98	31.3
All Veh	nicles	4575	6.5	0.894	36.7	LOS C	51.6	378.3	0.90	0.89	34.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	20	13.8	LOS B	0.0	0.0	0.45	0.45
P4	West Full Crossing	20	56.1	LOS E	0.1	0.1	0.91	0.91
All Peo	destrians	40	34.9	LOS D			0.68	0.68

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:57:09 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - PM - 2031 Base]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: PM Peak

Scenario: Year 2031 Base

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hollywoo	od Dr									
1	L2	74	7.4	0.197	48.2	LOS D	4.4	32.6	0.84	0.74	29.2
2	T1	43	5.0	0.986	102.2	LOS F	21.2	153.0	0.96	1.20	17.6
3	R2	181	3.1	0.986	124.4	LOS F	21.2	153.0	1.00	1.33	10.9
Approa	ach	298	4.4	0.986	102.3	LOS F	21.2	153.0	0.95	1.17	15.2
East: H	lume Hwy	ý									
4	L2	26	4.2	0.023	16.2	LOS B	0.6	4.5	0.39	0.67	35.9
5	T1	2268	3.9	0.984	77.4	LOS F	109.4	791.7	0.99	1.23	22.4
6	R2	66	4.9	0.297	65.5	LOS E	4.0	29.4	0.95	0.76	22.3
Approach		2360	3.9	0.984	76.4	LOS F	109.4	791.7	0.98	1.21	22.4
North:	Chaddert	on St									
7	L2	49	4.1	0.076	35.0	LOS C	2.1	15.2	0.69	0.70	29.4
8	T1	29	11.1	0.231	53.8	LOS D	3.3	24.7	0.91	0.73	25.4
9	R2	28	3.8	0.231	58.3	LOS E	3.3	24.7	0.91	0.73	30.4
Approa	ach	106	5.9	0.231	46.3	LOS D	3.3	24.7	0.81	0.71	28.5
West:	Hume Hw	у									
10	L2	32	3.3	0.675	29.0	LOS C	32.3	233.6	0.77	0.71	42.7
11	T1	2017	4.0	0.675	22.2	LOS B	32.3	234.1	0.76	0.69	43.3
12	R2	59	5.5	0.755	82.9	LOS F	4.2	31.1	1.00	0.84	22.4
Approa	ach	2108	4.0	0.755	24.0	LOS B	32.3	234.1	0.77	0.70	42.1
All Veh	icles	4872	4.0	0.986	54.7	LOS D	109.4	791.7	0.88	0.98	27.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	South Full Crossing	20	12.9	LOS B	0.0	0.0	0.44	0.44				
P4	West Full Crossing	20	57.9	LOS E	0.1	0.1	0.93	0.93				
All Pedestrians		40	35.4	LOS D			0.68	0.68				

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:57:12 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - AM - 2031 + PP + Precincts]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: AM Peak

Scenario: Year 2031 + Planning Proposal + Precincts

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hollywoo	od Dr									
1	L2	74	5.0	0.179	46.2	LOS D	4.1	30.3	0.82	0.74	30.0
2	T1	33	5.0	0.896	69.9	LOS E	14.6	106.9	0.96	1.00	21.9
3	R2	164	5.0	0.896	82.7	LOS F	14.6	106.9	1.00	1.07	14.8
Approa	ach	271	5.0	0.896	71.2	LOS F	14.6	106.9	0.94	0.97	19.4
East: F	lume Hw	у									
4	L2	42	5.0	0.038	16.7	LOS B	1.0	7.6	0.41	0.68	35.5
5	T1	1870	8.0	0.847	20.5	LOS B	46.9	351.1	0.83	0.77	44.7
6	R2	53	5.0	0.184	59.5	LOS E	3.0	22.2	0.90	0.75	23.5
Approach		1965	7.9	0.847	21.5	LOS B	46.9	351.1	0.82	0.77	43.5
North:	Chaddert	on St									
7	L2	36	5.0	0.051	32.7	LOS C	1.5	11.0	0.66	0.68	30.3
8	T1	33	5.0	0.254	54.4	LOS D	3.6	26.4	0.91	0.73	25.3
9	R2	29	5.0	0.254	59.5	LOS E	3.6	26.4	0.92	0.73	30.0
Approa	ach	98	5.0	0.254	47.9	LOS D	3.6	26.4	0.82	0.71	28.4
West:	Hume Hw	′У									
10	L2	28	5.0	0.912	55.3	LOS D	56.6	414.6	0.99	1.04	32.8
11	T1	2263	5.5	0.912	48.9	LOS D	56.7	415.3	0.98	1.03	29.8
12	R2	48	5.0	0.612	80.6	LOS F	3.4	24.6	1.00	0.77	22.8
Approa	ach	2339	5.5	0.912	49.6	LOS D	56.7	415.3	0.98	1.03	29.6
All Veh	icles	4673	6.4	0.912	39.0	LOS C	56.7	415.3	0.91	0.91	33.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	South Full Crossing	20	13.3	LOS B	0.0	0.0	0.44	0.44				
P4	West Full Crossing	20	57.0	LOS E	0.1	0.1	0.92	0.92				
All Pedestrians		40	35.2	LOS D			0.68	0.68				

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:39:03 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - PM - 2031 + PP + Precincts]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: PM Peak

Scenario: Year 2031 + Planning Proposal + Precincts

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hollywo	od Dr									
1	L2	74	3.1	0.197	48.0	LOS D	4.3	31.3	0.83	0.74	29.7
2	T1	43	5.0	0.987	104.0	LOS F	21.4	154.4	0.96	1.21	17.4
3	R2	181	3.1	0.987	125.9	LOS F	21.4	154.4	1.00	1.34	10.8
Approa	ach	298	3.4	0.987	103.4	LOS F	21.4	154.4	0.95	1.17	15.1
East: I	Hume Hw	vy									
4	L2	26	4.2	0.023	16.2	LOS B	0.6	4.5	0.39	0.67	35.9
5	T1	2315	3.9	1.004	101.1	LOS F	127.9	925.3	1.00	1.36	18.5
6	R2	66	4.9	0.297	65.5	LOS E	4.0	29.4	0.95	0.76	22.3
Approach		2407	3.9	1.004	99.2	LOS F	127.9	925.3	0.99	1.34	18.6
North:	Chadder	rton St									
7	L2	49	4.1	0.076	35.0	LOS C	2.1	15.2	0.69	0.70	29.4
8	T1	29	11.1	0.240	54.8	LOS D	3.4	25.0	0.92	0.73	25.2
9	R2	28	3.8	0.240	59.4	LOS E	3.4	25.0	0.92	0.73	30.1
Approa	ach	106	5.9	0.240	46.9	LOS D	3.4	25.0	0.81	0.71	28.3
West:	Hume H	wy									
10	L2	32	3.3	0.685	29.2	LOS C	33.0	239.0	0.78	0.72	42.7
11	T1	2047	4.0	0.685	22.4	LOS B	33.1	239.5	0.77	0.70	43.2
12	R2	59	5.5	0.755	82.9	LOS F	4.2	31.1	1.00	0.84	22.4
Approa	ach	2138	4.0	0.755	24.2	LOS B	33.1	239.5	0.77	0.70	41.9
All Vel	nicles	4949	4.0	1.004	65.9	LOS E	127.9	925.3	0.89	1.04	24.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	South Full Crossing	20	12.9	LOS B	0.0	0.0	0.44	0.44				
P4	West Full Crossing	20	57.9	LOS E	0.1	0.1	0.93	0.93				
All Pedestrians		40	35.4	LOS D			0.68	0.68				

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:39:06 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - AM - 2031 + PP Only]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: AM Peak

Scenario: Year 2031 + Planning Proposal Only

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hollywoo	d Dr									
1	L2	74	5.0	0.179	46.2	LOS D	4.1	30.3	0.82	0.74	30.0
2	T1	33	5.0	0.896	69.9	LOS E	14.6	106.9	0.96	1.00	21.9
3	R2	164	5.0	0.896	82.7	LOS F	14.6	106.9	1.00	1.07	14.8
Approach		271	5.0	0.896	71.2	LOS F	14.6	106.9	0.94	0.97	19.4
East: F	lume Hwy	/									
4	L2	42	5.0	0.038	16.7	LOS B	1.0	7.6	0.41	0.68	35.5
5	T1	1862	8.0	0.843	20.1	LOS B	46.2	345.9	0.82	0.77	45.1
6	R2	53	5.0	0.184	59.5	LOS E	3.0	22.2	0.90	0.75	23.5
Approach		1957	7.9	0.843	21.1	LOS B	46.2	345.9	0.82	0.77	43.8
North:	Chadderte	on St									
7	L2	36	5.0	0.051	32.7	LOS C	1.5	11.0	0.66	0.68	30.3
8	T1	33	5.0	0.254	54.4	LOS D	3.6	26.4	0.91	0.73	25.3
9	R2	29	5.0	0.254	59.5	LOS E	3.6	26.4	0.92	0.73	30.0
Approa	ach	98	5.0	0.254	47.9	LOS D	3.6	26.4	0.82	0.71	28.4
West: I	Hume Hw	У									
10	L2	28	5.0	0.889	48.7	LOS D	50.9	373.2	0.97	0.98	34.9
11	T1	2204	5.5	0.889	42.2	LOS C	51.0	373.8	0.96	0.97	32.4
12	R2	48	5.0	0.612	80.6	LOS F	3.4	24.6	1.00	0.77	22.8
Approa	ach	2280	5.5	0.889	43.1	LOS D	51.0	373.8	0.96	0.96	32.1
All Veh	icles	4606	6.5	0.896	35.5	LOS C	51.0	373.8	0.89	0.88	34.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	South Full Crossing	20	13.3	LOS B	0.0	0.0	0.44	0.44				
P4	West Full Crossing	20	57.0	LOS E	0.1	0.1	0.92	0.92				
All Pedestrians		40	35.2	LOS D			0.68	0.68				

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Friday, June 16, 2017 9:49:44 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - PM - 2031 + PP Only]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: PM Peak

Scenario: Year 2031 + Planning Proposal Only

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/ <u>c</u>	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance <u>m</u>	Prop. Queued	Effective Stop Rate per v <u>eh</u>	Average Speed km/ <u>h</u>
South:	Hollywoo	od Dr									
1	L2	74	7.4	0.197	48.2	LOS D	4.4	32.6	0.84	0.74	29.2
2	T1	43	5.0	0.986	102.2	LOS F	21.2	153.0	0.96	1.20	17.6
3	R2	181	3.1	0.986	124.4	LOS F	21.2	153.0	1.00	1.33	10.9
Approa	ach	298	4.4	0.986	102.3	LOS F	21.2	153.0	0.95	1.17	15.2
East: F	lume Hw	У									
4	L2	26	4.2	0.023	16.2	LOS B	0.6	4.5	0.39	0.67	35.9
5	T1	2283	3.9	0.990	84.1	LOS F	114.5	828.3	1.00	1.27	21.1
6	R2	66	4.9	0.297	65.5	LOS E	4.0	29.4	0.95	0.76	22.3
Approach		2375	3.9	0.990	82.8	LOS F	114.5	828.3	0.99	1.25	21.2
North:	Chadder	ton St									
7	L2	49	4.1	0.076	35.0	LOS C	2.1	15.2	0.69	0.70	29.4
8	T1	29	11.1	0.231	53.8	LOS D	3.3	24.7	0.91	0.73	25.4
9	R2	28	3.8	0.231	58.3	LOS E	3.3	24.7	0.91	0.73	30.4
Approa	ach	106	5.9	0.231	46.3	LOS D	3.3	24.7	0.81	0.71	28.5
West:	Hume Hw	vy									
10	L2	32	3.3	0.681	29.1	LOS C	32.7	237.0	0.77	0.71	42.7
11	T1	2036	4.0	0.681	22.4	LOS B	32.8	237.5	0.76	0.70	43.2
12	R2	59	5.5	0.755	82.9	LOS F	4.2	31.1	1.00	0.84	22.4
Approa	ach	2127	4.0	0.755	24.2	LOS B	32.8	237.5	0.77	0.70	42.0
All Veh	nicles	4906	4.0	0.990	57.8	LOS E	114.5	828.3	0.89	1.00	26.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective			
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P1	South Full Crossing	20	12.9	LOS B	0.0	0.0	0.44	0.44			
P4	West Full Crossing	20	57.9	LOS E	0.1	0.1	0.93	0.93			
All Pedestrians		40	35.4	LOS D			0.68	0.68			

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Friday, June 16, 2017 9:49:48 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

PDC Consultants

Attachment 1c

Hume Hwy / Cabramatta Rd East SIDRA Results

Site: 1 [3. Hume Hwy x Cabramatta Rd E - AM - Yr 2016]

Intersection: Hume Hwy x Cabramatta Road East Period: AM Peak Scenario: Year 2016 Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: H	ume Hwy										
5	T1	1293	8.6	0.490	8.3	LOS A	17.7	133.0	0.46	0.42	62.6
6	R2	351	7.4	0.637	57.7	LOS E	14.4	106.9	0.94	0.82	33.4
Approa	ch	1644	8.3	0.637	18.8	LOS B	17.7	133.0	0.56	0.51	53.8
North: (Cabramat	ta Rd East									
7	L2	553	4.5	0.630	38.4	LOS C	25.5	185.1	0.84	0.84	38.5
9	R2	337	3.9	0.630	60.7	LOS E	12.5	90.5	0.97	0.82	40.0
Approa	ch	890	4.3	0.630	46.8	LOS D	25.5	185.1	0.89	0.83	39.2
West: H	lume Hwy	/									
10	L2	97	7.2	0.659	35.3	LOS C	30.3	222.8	0.83	0.77	49.5
11	T1	1697	5.8	0.659	29.3	LOS C	30.3	222.8	0.83	0.75	49.3
Approa	ch	1794	5.9	0.659	29.6	LOS C	30.3	222.8	0.83	0.75	49.3
All Vehi	cles	4328	6.5	0.659	29.0	LOS C	30.3	222.8	0.74	0.68	48.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestriar	าร						
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
U	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P3	North Full Crossing	20	26.2	LOS C	0.0	0.0	0.62	0.62
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96
All Peo	destrians	40	43.9	LOS E			0.79	0.79

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:43:18 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [3. Hume Hwy x Cabramatta Rd E - PM - Yr 2016]

Intersection: Hume Hwy x Cabramatta Road East Period: PM Peak Scenario: Year 2016 Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: H	ume Hwy										
5	T1	1735	3.8	0.665	12.2	LOS A	31.6	228.6	0.62	0.57	59.7
6	R2	626	3.0	0.738	35.3	LOS C	12.1	86.7	0.98	0.85	40.7
Approa	ch	2361	3.6	0.738	18.3	LOS B	31.6	228.6	0.71	0.65	53.7
North: 0	Cabramatta	Rd East									
7	L2	470	2.8	0.586	25.8	LOS B	18.8	134.7	0.67	0.78	43.7
9	R2	462	1.5	0.751	60.9	LOS E	14.5	102.5	0.96	0.86	40.0
Approa	ch	932	2.2	0.751	43.2	LOS D	18.8	134.7	0.81	0.82	41.4
West: H	lume Hwy										
10	L2	189	3.7	0.710	45.1	LOS D	28.5	206.9	0.91	0.87	45.7
11	T1	1359	4.6	0.710	38.8	LOS C	28.8	209.6	0.92	0.83	44.9
Approa	ch	1548	4.5	0.710	39.5	LOS C	28.8	209.6	0.92	0.83	45.0
All Vehi	icles	4841	3.6	0.751	29.9	LOS C	31.6	228.6	0.80	0.74	47.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestria	ans						
Mov ID	Description	Demand Flow	Average Delav	Level of Service	Average Back Pedestrian	of Queue	Prop. Queued	Effective Stop Rate
12		ped/h	sec	0011100	ped	m	Quodou	per ped
P3	North Full Crossing	20	34.9	LOS D	0.1	0.1	0.72	0.72
P4	West Full Crossing	20	57.9	LOS E	0.1	0.1	0.93	0.93
All Pe	destrians	40	46.4	LOS E			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:43:21 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [3. Hume Hwy x Cabramatta Rd E - AM - 2031 Base]

Intersection: Hume Hwy x Cabramatta Road East Period: AM Peak

Scenario: Year 2031 Base

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Mover	Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
East: H	ume Hwy											
5	T1	1539	8.6	0.555	6.9	LOS A	20.3	152.9	0.45	0.41	63.7	
6	R2	520	7.4	0.775	52.4	LOS D	20.2	150.5	0.91	0.84	34.9	
Approa	ch	2059	8.3	0.775	18.4	LOS B	20.3	152.9	0.56	0.52	53.8	
North: (Cabramatta	a Rd East										
7	L2	623	4.5	0.715	35.0	LOS C	32.1	233.0	0.85	0.86	39.8	
9	R2	364	3.9	0.761	69.6	LOS E	12.8	92.6	1.00	0.87	37.9	
Approa	ch	987	4.3	0.761	47.8	LOS D	32.1	233.0	0.91	0.86	38.9	
West: H	lume Hwy											
10	L2	144	7.2	0.780	40.6	LOS C	36.7	270.3	0.92	0.85	47.4	
11	T1	1809	5.8	0.780	34.9	LOS C	36.7	270.3	0.93	0.84	46.6	
Approa	ch	1953	5.9	0.780	35.3	LOS C	36.7	270.3	0.93	0.84	46.7	
All Vehi	cles	4999	6.6	0.780	30.8	LOS C	36.7	270.3	0.77	0.71	47.2	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestr	ians						
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate
		ped/h	sec		ped	m		per ped
P3	North Full Crossing	20	29.4	LOS C	0.1	0.1	0.66	0.66
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96
All Pe	destrians	40	45.5	LOS E			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:58:28 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [3. Hume Hwy x Cabramatta Rd E - PM - 2031 Base]

Intersection: Hume Hwy x Cabramatta Road East Period: PM Peak Scenario: Year 2031 Base Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles Demand Flows <u>Total</u> HV OD Mov Level of Service 95% Back of Queue Vehicles Distanc Prop. Queued Mov ID Deg. Satn Average Delay Effective Stop Rate Average Distance Spee per veh East: Hume Hwy 5 T1 1856 3.8 0.711 13.0 LOS A 36.0 260.2 0.66 0.61 6 R2 705 3.0 0.831 40.8 LOS C 15.4 110.8 1.00 0.90 Approach 2561 0.831 20.7 LOS B 36.0 260.2 0.69 3.6 0.75 North: Cabramatta Rd East 7 L2 0.718 27.0 LOS B 23.1 165.9 0.71 0.80 546 2.8 9 R2 0.94 496 1.5 0.854 69.0 LOS E 17.0 120.6 0.97 Approach 1042 2.2 0.854 47.0 LOS D 23.1 165.9 0.83 0.87 West: Hume Hwy 47.6 LOS D 34.3 249.0 0.91 L2 213 37 0.799 0.96 10 LOS C 0.88 11 T1 1527 4.6 0.799 41.7 34.5 251.2 0.96

km/h

59.1

38.6

52.3

43.2

38.1

40.1

44.9

43.7

43.9

46.4

0.89

0.79

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

LOS C

LOS C

34.5

36.0

251.2

260.2

0.96

0.84

42.4

32.9

Intersection and Approach LOS values are based on average delay for all vehicle movements.

0.799

0.854

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

4.5

3.6

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

1740

5343

Approach

All Vehicles

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestria	ns						
Mov	Description	Demand Flow	Average Delay	Level of Service	Average Back	of Queue	Prop.	Effective Stop Rate
		ped/h	sec	Octvice	ped	m	Queueu	per ped
P3	North Full Crossing	20	34.9	LOS D	0.1	0.1	0.72	0.72
P4	West Full Crossing	20	57.9	LOS E	0.1	0.1	0.93	0.93
All Pe	destrians	40	46.4	LOS E			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:58:31 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [3. Hume Hwy x Cabramatta Rd E - AM - 2031 + PP + Precincts]

Intersection: Hume Hwy x Cabramatta Road East

Period: AM Peak

Scenario: Year 2031 + Planning Proposal + Precincts

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Mover	Movement Performance - Vehicles										
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: H	ume Hwy										
5	T1	1544	8.6	0.573	8.3	LOS A	22.4	168.3	0.49	0.45	62.6
6	R2	533	7.4	0.824	55.8	LOS D	21.9	162.7	0.92	0.86	33.9
Approa	ch	2077	8.3	0.824	20.5	LOS B	22.4	168.3	0.60	0.56	52.5
North: (Cabramatt	a Rd East									
7	L2	636	4.5	0.708	33.6	LOS C	32.1	233.5	0.84	0.85	40.3
9	R2	408	3.9	0.814	69.9	LOS E	13.9	100.7	1.00	0.91	37.9
Approa	ch	1044	4.3	0.814	47.8	LOS D	32.1	233.5	0.90	0.88	39.0
West: H	lume Hwy										
10	L2	151	7.2	0.819	44.2	LOS D	39.4	290.3	0.95	0.89	46.2
11	T1	1829	5.8	0.819	38.7	LOS C	39.4	290.3	0.96	0.89	45.0
Approa	ch	1980	5.9	0.819	39.1	LOS C	39.4	290.3	0.96	0.89	45.1
All Vehi	icles	5101	6.5	0.824	33.3	LOS C	39.4	290.3	0.80	0.75	46.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestria	ns						
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P3	North Full Crossing	20	30.7	LOS D	0.1	0.1	0.67	0.67
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96
All Pe	destrians	40	46.2	LOS E			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:39:08 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

Site: 1 [3. Hume Hwy x Cabramatta Rd E - PM - 2031 + PP + Precincts]

Intersection: Hume Hwy x Cabramatta Road East

Period: PM Peak

Scenario: Year 2031 + Planning Proposal + Precincts

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Mover	Movement Performance - Vehicles										
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: H	ume Hwy										
5	T1	1873	3.8	0.726	13.8	LOS A	37.6	271.5	0.68	0.63	58.6
6	R2	735	3.0	0.894	49.6	LOS D	18.3	131.2	1.00	0.96	35.7
Approa	ch	2608	3.6	0.894	23.9	LOS B	37.6	271.5	0.77	0.72	50.5
North: (Cabramat	ta Rd East									
7	L2	546	2.8	0.725	27.0	LOS B	23.1	165.9	0.71	0.80	43.2
9	R2	518	1.5	0.884	73.1	LOS F	18.5	131.3	0.97	0.97	37.2
Approa	ch	1064	2.2	0.884	49.5	LOS D	23.1	165.9	0.84	0.89	39.4
West: H	lume Hwy	/									
10	L2	227	3.7	0.807	48.0	LOS D	35.0	254.0	0.96	0.92	44.8
11	T1	1531	4.6	0.807	42.3	LOS C	35.3	256.6	0.97	0.89	43.5
Approa	ch	1758	4.5	0.807	43.0	LOS D	35.3	256.6	0.97	0.90	43.7
All Veh	icles	5430	3.6	0.894	35.1	LOS C	37.6	271.5	0.85	0.81	45.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestria	ns						
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
UI	Description	FIOW	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/n	Sec		ped	m		per ped
P3	North Full Crossing	20	34.9	LOS D	0.1	0.1	0.72	0.72
P4	West Full Crossing	20	57.0	LOS E	0.1	0.1	0.92	0.92
All Peo	destrians	40	45.9	LOS E			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:39:10 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

Site: 1 [3. Hume Hwy x Cabramatta Rd E - AM - 2031 + PP Only]

Intersection: Hume Hwy x Cabramatta Road East

Period: AM Peak

Scenario: Year 2031 + Planning Proposal Only

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Mover	Movement Performance - Vehicles										
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: H	ume Hwy										
5	T1	1539	8.6	0.560	7.4	LOS A	21.0	157.7	0.46	0.43	63.4
6	R2	530	7.4	0.795	53.3	LOS D	20.9	155.9	0.91	0.85	34.6
Approa	ch	2069	8.3	0.795	19.1	LOS B	21.0	157.7	0.58	0.54	53.3
North: (Cabramatta	Rd East									
7	L2	621	4.5	0.702	34.1	LOS C	31.4	228.5	0.84	0.85	40.1
9	R2	377	3.9	0.769	69.0	LOS E	13.2	95.5	1.00	0.88	38.0
Approa	ch	998	4.3	0.769	47.3	LOS D	31.4	228.5	0.90	0.86	39.1
West: H	lume Hwy										
10	L2	152	7.2	0.797	41.6	LOS C	37.4	275.5	0.94	0.86	47.1
11	T1	1809	5.8	0.797	36.1	LOS C	37.4	275.5	0.94	0.85	46.1
Approa	ch	1961	5.9	0.797	36.5	LOS C	37.4	275.5	0.94	0.85	46.2
All Vehi	cles	5028	6.6	0.797	31.5	LOS C	37.4	275.5	0.78	0.72	46.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians												
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P3	North Full Crossing	20	30.0	LOS D	0.1	0.1	0.67	0.67				
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96				
All Pedestrians		40	45.9	LOS E			0.81	0.81				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Friday, June 16, 2017 9:49:51 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

Site: 1 [3. Hume Hwy x Cabramatta Rd E - PM - 2031 + PP Only]

Intersection: Hume Hwy x Cabramatta Road East

Period: PM Peak

Scenario: Year 2031 + Planning Proposal Only

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Mover	Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
East: H	ume Hwy											
5	T1	1856	3.8	0.719	13.6	LOS A	36.9	266.6	0.67	0.63	58.6	
6	R2	721	3.0	0.877	46.6	LOS D	17.1	122.7	1.00	0.94	36.7	
Approa	ch	2577	3.6	0.877	22.9	LOS B	36.9	266.6	0.76	0.71	51.0	
North: (Cabramatt	a Rd East										
7	L2	542	2.8	0.719	27.0	LOS B	22.9	164.2	0.70	0.80	43.2	
9	R2	512	1.5	0.866	70.1	LOS E	17.8	126.1	0.97	0.95	37.9	
Approa	ch	1054	2.2	0.866	47.9	LOS D	22.9	164.2	0.83	0.87	39.9	
West: H	lume Hwy											
10	L2	224	3.7	0.804	48.0	LOS D	34.7	251.8	0.96	0.92	44.8	
11	T1	1527	4.6	0.804	42.1	LOS C	35.0	254.5	0.96	0.89	43.6	
Approa	ch	1751	4.5	0.804	42.8	LOS D	35.0	254.5	0.96	0.89	43.8	
All Vehi	cles	5382	3.6	0.877	34.3	LOS C	36.9	266.6	0.84	0.80	45.8	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians												
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
UI	Description	FIOW	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/n	Sec		ped	m		per ped				
P3	North Full Crossing	20	34.9	LOS D	0.1	0.1	0.72	0.72				
P4	West Full Crossing	20	57.0	LOS E	0.1	0.1	0.92	0.92				
All Peo	destrians	40	45.9	LOS E			0.82	0.82				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Friday, June 16, 2017 9:49:56 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

PDC Consultants

Attachment 1d

Cabramatta Rd East / Cumberland St SIDRA Results

Site: 1 [4. Cabramatta Rd E x Cumberland St - AM - Yr 2016]

Intersection: Cabramatta Road East x Cumberland St Period: AM Peak

Scenario: Year 2016

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South:	Cumber	ven/n land St	%	V/C	sec		ven	m		per ven	Km/n
1	12	76	13	0 084	13.2	LOSA	13	9.5	0.55	0.64	33.9
2	T1	30	0.0	0.004	19.7	LOSB	1.0	12.5	0.00	0.66	25.5
3	R2	40	0.0	0.151	23.1		1.0	12.0	0.77	0.00	32.4
Approx	ach	146	0.0	0.151	17.2		1.0	12.5	0.65	0.00	32.7
Арріос		140	0.7	0.151	17.2	LOG D	1.0	12.5	0.05	0.00	52.2
East: 0	Cabramat	tta Rd East									
4	L2	18	0.0	0.437	25.9	LOS B	6.4	46.6	0.86	0.72	32.0
5	T1	435	5.3	0.437	22.5	LOS B	6.5	47.9	0.86	0.72	34.0
6	R2	48	4.2	0.165	24.5	LOS B	1.3	9.3	0.78	0.71	31.7
Approa	ach	501	5.0	0.437	22.8	LOS B	6.5	47.9	0.86	0.72	33.7
North:	Cumberl	and St									
7	L2	35	0.0	0.089	21.7	LOS B	1.3	8.8	0.74	0.64	32.8
8	T1	41	2.4	0.443	21.0	LOS B	5.2	37.8	0.81	0.72	24.7
9	R2	155	5.2	0.443	26.2	LOS B	5.2	37.8	0.86	0.77	30.0
Approa	ach	231	3.9	0.443	24.6	LOS B	5.2	37.8	0.84	0.74	29.9
West:	Cabrama	tta Rd East									
10	L2	104	1.0	0.577	18.0	LOS B	12.4	89.2	0.78	0.71	33.4
11	T1	853	4.0	0.577	13.9	LOS A	12.4	89.2	0.75	0.67	36.0
12	R2	84	3.6	0.194	16.1	LOS B	1.7	11.9	0.77	0.70	32.8
Approa	ach	1041	3.7	0.577	14.5	LOS B	12.4	89.2	0.76	0.68	35.6
All Veh	nicles	1919	3.8	0.577	18.1	LOS B	12.4	89.2	0.78	0.69	34.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ment Performance - Pedestrians							
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	South Full Crossing	150	25.9	LOS C	0.3	0.3	0.86	0.86
P2	East Full Crossing	150	24.2	LOS C	0.2	0.2	0.83	0.83
P3	North Full Crossing	150	15.2	LOS B	0.2	0.2	0.66	0.66
P4	West Full Crossing	150	24.2	LOS C	0.2	0.2	0.83	0.83
All Ped	lestrians	600	22.4	LOS C			0.80	0.80

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Tuesday, June 20, 2017 4:58:06 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [4. Cabramatta Rd E x Cumberland St - PM - Yr 2016]

Intersection: Cabramatta Road East x Cumberland St Period: PM Peak Scenario: Year 2016 Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	Cumber	land St									
1	L2	107	0.0	0.132	15.8	LOS B	2.2	15.1	0.62	0.67	32.9
2	T1	39	0.0	0.174	21.5	LOS B	2.1	14.4	0.80	0.67	24.9
3	R2	38	0.0	0.174	24.8	LOS B	2.1	14.4	0.80	0.67	32.0
Appro	ach	184	0.0	0.174	18.9	LOS B	2.2	15.1	0.70	0.67	31.5
East: (Cabrama	tta Rd East									
4	L2	14	0.0	0.488	21.9	LOS B	9.0	65.0	0.82	0.70	33.3
5	T1	660	3.9	0.488	18.4	LOS B	9.0	65.0	0.82	0.70	34.9
6	R2	53	1.9	0.158	15.4	LOS B	0.9	6.6	0.79	0.69	34.4
Appro	ach	727	3.7	0.488	18.3	LOS B	9.0	65.0	0.82	0.70	34.9
North:	Cumber	land St									
7	L2	69	1.4	0.124	18.4	LOS B	1.8	13.2	0.68	0.66	33.7
8	T1	19	5.3	0.618	17.5	LOS B	7.2	51.5	0.74	0.70	26.0
9	R2	223	3.1	0.618	28.8	LOS C	7.2	51.5	0.93	0.82	29.1
Appro	ach	311	2.9	0.618	25.8	LOS B	7.2	51.5	0.86	0.78	30.1
West:	Cabrama	atta Rd East									
10	L2	131	0.8	0.645	23.3	LOS B	12.6	89.3	0.88	0.78	31.4
11	T1	717	1.7	0.645	19.6	LOS B	12.6	89.3	0.87	0.76	34.6
12	R2	72	0.0	0.183	14.3	LOS A	1.3	8.9	0.74	0.69	33.5
Appro	ach	920	1.4	0.645	19.7	LOS B	12.6	89.3	0.86	0.76	34.2
All Vel	nicles	2142	2.3	0.645	20.0	LOS B	12.6	89.3	0.83	0.73	33.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ment Performance - Pedestrians							
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		pea/n	sec		ped	m		per ped
P1	South Full Crossing	50	20.9	LOS C	0.1	0.1	0.77	0.77
P2	East Full Crossing	50	27.5	LOS C	0.1	0.1	0.89	0.89
P3	North Full Crossing	50	20.9	LOS C	0.1	0.1	0.77	0.77
P4	West Full Crossing	50	27.5	LOS C	0.1	0.1	0.89	0.89
All Ped	lestrians	200	24.2	LOS C			0.83	0.83

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Tuesday, June 20, 2017 4:58:10 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [4. Cabramatta Rd E x Cumberland St - AM - 2031 Base]

Intersection: Cabramatta Road East x Cumberland St Period: AM Peak

Scenario: Year 2031 Base

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Cumberl	and St									
1	L2	76	1.3	0.095	15.6	LOS B	1.5	10.7	0.61	0.66	33.0
2	T1	30	0.0	0.189	23.3	LOS B	2.0	13.7	0.83	0.69	24.0
3	R2	40	0.0	0.189	26.7	LOS B	2.0	13.7	0.83	0.69	31.4
Approa	ach	146	0.7	0.189	20.2	LOS B	2.0	13.7	0.72	0.67	31.2
East: 0	Cabramat	ta Rd East									
4	L2	18	0.0	0.507	22.7	LOS B	9.0	65.6	0.84	0.72	33.0
5	T1	644	5.3	0.507	19.3	LOS B	9.1	66.3	0.84	0.72	34.7
6	R2	48	4.2	0.146	20.5	LOS B	1.2	8.4	0.71	0.69	32.9
Approa	ach	710	5.1	0.507	19.5	LOS B	9.1	66.3	0.83	0.71	34.6
North:	Cumberla	and St									
7	L2	35	0.0	0.111	25.1	LOS B	1.4	9.8	0.80	0.67	31.9
8	T1	41	2.4	0.553	24.7	LOS B	5.7	41.2	0.87	0.74	23.2
9	R2	155	5.2	0.553	30.3	LOS C	5.7	41.2	0.93	0.80	28.8
Approa	ach	231	3.9	0.553	28.5	LOS C	5.7	41.2	0.90	0.77	28.7
West:	Cabrama	tta Rd East									
10	L2	104	1.0	0.555	14.7	LOS B	12.4	89.5	0.70	0.65	34.6
11	T1	961	4.0	0.555	10.7	LOS A	12.4	89.5	0.68	0.61	36.8
12	R2	84	3.6	0.197	13.7	LOS A	1.4	10.3	0.73	0.69	33.7
Approa	ach	1149	3.7	0.555	11.3	LOS A	12.4	89.5	0.68	0.62	36.5
All Veh	nicles	2236	4.0	0.555	16.3	LOS B	12.4	89.5	0.75	0.67	35.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ment Performance - Pedestrians							
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
D	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	South Full Crossing	150	21.7	LOS C	0.2	0.2	0.79	0.79
P2	East Full Crossing	150	28.5	LOS C	0.3	0.3	0.91	0.91
P3	North Full Crossing	150	12.1	LOS B	0.2	0.2	0.59	0.59
P4	West Full Crossing	150	28.5	LOS C	0.3	0.3	0.91	0.91
All Ped	lestrians	600	22.7	LOS C			0.80	0.80

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Tuesday, June 20, 2017 5:12:24 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [4. Cabramatta Rd E x Cumberland St - PM - 2031 Base]

Intersection: Cabramatta Road East x Cumberland St Period: PM Peak

Scenario: Year 2031 Base

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veb/b	Flows HV %	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Average Speed km/b
South:	Cumber	land St	70	10			Von				KIII/II
1	L2	107	0.0	0.141	17.2	LOS B	2.3	15.9	0.65	0.68	32.4
2	T1	39	0.0	0.195	23.3	LOS B	2.1	15.0	0.83	0.69	24.2
3	R2	38	0.0	0.195	26.7	LOS B	2.1	15.0	0.83	0.69	31.5
Approa	ach	184	0.0	0.195	20.4	LOS B	2.3	15.9	0.73	0.68	30.9
East: 0	Cabramat	ta Rd East									
4	L2	14	0.0	0.514	20.7	LOS B	10.0	72.4	0.81	0.70	33.6
5	T1	744	3.9	0.514	17.2	LOS B	10.0	72.4	0.80	0.70	35.2
6	R2	53	1.9	0.162	15.0	LOS B	0.9	6.1	0.79	0.70	34.5
Approa	ach	811	3.7	0.514	17.2	LOS B	10.0	72.4	0.80	0.70	35.2
North:	Cumberl	and St									
7	L2	69	1.4	0.137	19.9	LOS B	2.0	14.0	0.71	0.67	33.2
8	T1	19	5.3	0.684	18.7	LOS B	7.6	54.9	0.76	0.71	25.5
9	R2	223	3.1	0.684	31.9	LOS C	7.6	54.9	0.96	0.88	28.3
Approa	ach	311	2.9	0.684	28.4	LOS B	7.6	54.9	0.89	0.82	29.3
West:	Cabrama	tta Rd East									
10	L2	131	0.8	0.676	22.3	LOS B	14.2	100.7	0.88	0.79	31.8
11	T1	832	1.7	0.676	18.6	LOS B	14.2	100.7	0.86	0.76	34.8
12	R2	72	0.0	0.185	13.5	LOS A	1.2	8.3	0.72	0.69	33.8
Approa	ach	1035	1.5	0.676	18.7	LOS B	14.2	100.7	0.86	0.76	34.5
All Veh	nicles	2341	2.3	0.684	19.6	LOS B	14.2	100.7	0.83	0.74	34.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ment Performance - Pedestrians							
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow ned/h	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		pean	300		peu			per peu
P1	South Full Crossing	50	19.4	LOS B	0.1	0.1	0.74	0.74
P2	East Full Crossing	50	29.3	LOS C	0.1	0.1	0.92	0.92
P3	North Full Crossing	50	19.4	LOS B	0.1	0.1	0.74	0.74
P4	West Full Crossing	50	29.3	LOS C	0.1	0.1	0.92	0.92
All Ped	lestrians	200	24.3	LOS C			0.83	0.83

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Tuesday, June 20, 2017 5:12:25 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [4. Cabramatta Rd E x Cumberland St - AM - 2031 + PP + Precincts]

Intersection: Cabramatta Road East x Cumberland St

Period: AM Peak

Scenario: Year 2031 + Planning Proposal + Precincts

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Move	ment Pe	erformance -	Vehicl	es							
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec_	Level of Service	95% Back Vehicles veh	of Queue Distance <u>m</u>	Prop. Queued	Effective Stop Rate per v <u>eh</u>	Average Speed km/ <u>h</u>
South:	Cumber	land St									
1	L2	90	1.3	0.116	16.4	LOS B	1.8	13.1	0.63	0.67	32.7
2	T1	67	0.0	0.311	23.3	LOS B	3.7	26.0	0.85	0.72	24.2
3	R2	64	0.0	0.311	26.6	LOS B	3.7	26.0	0.85	0.72	31.5
Approa	ach	221	0.5	0.311	21.4	LOS B	3.7	26.0	0.76	0.70	30.4
East: 0	Cabramat	tta Rd East									
4	L2	15	0.0	0.498	22.7	LOS B	8.8	64.4	0.83	0.71	33.0
5	T1	636	5.3	0.498	19.3	LOS B	8.9	64.9	0.83	0.71	34.7
6	R2	72	4.2	0.335	24.7	LOS B	2.0	14.7	0.81	0.74	31.7
Approa	ach	723	5.1	0.498	19.9	LOS B	8.9	64.9	0.83	0.71	34.5
North:	Cumberl	and St									
7	L2	44	0.0	0.115	24.3	LOS B	1.5	10.4	0.78	0.68	32.0
8	T1	47	2.4	0.574	24.8	LOS B	6.3	46.1	0.89	0.77	23.2
9	R2	167	5.2	0.574	29.6	LOS C	6.3	46.1	0.93	0.80	29.0
Approa	ach	258	3.8	0.574	27.9	LOS B	6.3	46.1	0.90	0.77	28.9
West:	Cabrama	atta Rd East									
10	L2	79	1.0	0.575	16.1	LOS B	13.0	93.7	0.74	0.67	34.2
11	T1	971	4.0	0.575	12.1	LOS A	13.0	93.7	0.72	0.64	36.5
12	R2	87	3.6	0.230	15.1	LOS B	1.6	11.6	0.76	0.70	33.2
Approa	ach	1137	3.8	0.575	12.6	LOS A	13.0	93.7	0.72	0.65	36.2
All Veh	nicles	2339	3.9	0.575	17.4	LOS B	13.0	93.7	0.78	0.69	34.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ment Performance - Pedestrians							
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	South Full Crossing	150	21.7	LOS C	0.2	0.2	0.79	0.79
P2	East Full Crossing	150	26.7	LOS C	0.3	0.3	0.88	0.88
P3	North Full Crossing	150	13.3	LOS B	0.2	0.2	0.62	0.62
P4	West Full Crossing	150	26.7	LOS C	0.3	0.3	0.88	0.88
All Ped	lestrians	600	22.1	LOS C			0.79	0.79

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Tuesday, June 20, 2017 5:14:40 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

Site: 1 [4. Cabramatta Rd E x Cumberland St - PM - 2031 + PP + Precincts]

Intersection: Cabramatta Road East x Cumberland St

Period: PM Peak

Scenario: Year 2031 + Planning Proposal + Precincts

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South:	Cumberl	and St	%	V/C	sec	_	ven	m	_	per ven	Km/n	
1	12	107	0.0	0 132	15.8	LOSB	22	15.1	0.62	0.67	32.9	
2	T1	61	0.0	0.102	21.2	LOSB	2.2	20.6	0.02	0.07	25.1	
2	P2	48	0.0	0.247	21.2		2.0	20.0	0.01	0.00	32.1	
Approx	11 <u>2</u>	216	0.0	0.247	10.2		2.9	20.0	0.01	0.03	21.1	
Approa	acri	210	0.0	0.247	19.5	LU3 B	2.9	20.0	0.72	0.00	31.1	
East: 0	Cabramat	ta Rd East										
4	L2	11	0.0	0.573	22.6	LOS B	11.0	79.6	0.85	0.74	33.0	
5	T1	736	3.9	0.573	18.9	LOS B	11.0	79.6	0.84	0.72	34.8	
6	R2	87	1.9	0.277	16.5	LOS B	1.6	11.1	0.84	0.73	34.1	
Approa	ach	834	3.6	0.573	18.7	LOS B	11.0	79.6	0.84	0.72	34.7	
North:	Cumberla	and St										
7	L2	86	1.4	0.145	17.9	LOS B	2.2	15.6	0.67	0.66	33.8	
8	T1	34	5.3	0.723	22.9	LOS B	8.6	61.8	0.84	0.81	23.8	
9	R2	229	3.1	0.723	32.4	LOS C	8.6	61.8	0.97	0.91	28.2	
Approa	ach	349	2.9	0.723	27.9	LOS B	8.6	61.8	0.88	0.84	29.4	
West:	Cabrama	tta Rd East										
10	L2	91	0.8	0.712	24.7	LOS B	14.9	105.7	0.91	0.83	31.1	
11	T1	848	1.7	0.712	21.1	LOS B	14.9	105.7	0.90	0.81	34.3	
12	R2	86	0.0	0.232	15.0	LOS B	1.5	10.7	0.78	0.71	33.2	
Approa	ach	1025	1.5	0.712	20.9	LOS B	14.9	105.7	0.89	0.81	34.0	
All Veh	nicles	2424	2.3	0.723	21.0	LOS B	14.9	105.7	0.86	0.77	33.6	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ment Performance - Pedestrians							
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
UI	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	South Full Crossing	50	20.9	LOS C	0.1	0.1	0.77	0.77
P2	East Full Crossing	50	27.5	LOS C	0.1	0.1	0.89	0.89
P3	North Full Crossing	50	20.9	LOS C	0.1	0.1	0.77	0.77
P4	West Full Crossing	50	27.5	LOS C	0.1	0.1	0.89	0.89
All Ped	lestrians	200	24.2	LOS C			0.83	0.83

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Tuesday, June 20, 2017 5:14:41 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

Site: 1 [4. Cabramatta Rd E x Cumberland St - AM - 2031 + PP Only]

Intersection: Cabramatta Road East x Cumberland St

Period: AM Peak

Scenario: Year 2031 + Planning Proposal Only

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Cumberl	and St	%	V/C	sec	_	ven	m	_	per ven	Km/n
1	12	72	13	0.096	16.9	LOS B	15	10.6	0.64	0.66	32.5
2	 T1	44	0.0	0.202	22.5	LOS B	2.3	16.1	0.82	0.68	24.5
3	R2	40	0.0	0.202	25.9	LOS B	2.3	16.1	0.82	0.68	31.7
Appro	ach	156	0.6	0.202	20.8	LOS B	2.3	16.1	0.74	0.67	30.7
East: (Jabramat	ta Rd East		o /=o							
4	L2	15	0.0	0.479	21.8	LOS B	8.6	63.0	0.81	0.70	33.3
5	T1	637	5.3	0.479	18.4	LOS B	8.7	63.4	0.81	0.70	34.9
6	R2	74	4.2	0.232	21.9	LOS B	1.9	13.7	0.75	0.72	32.5
Approa	ach	726	5.1	0.479	18.8	LOS B	8.7	63.4	0.81	0.70	34.7
North:	Cumberla	and St									
7	L2	38	0.0	0.110	25.1	LOS B	1.4	9.7	0.80	0.67	31.8
8	T1	42	2.4	0.550	24.6	LOS B	5.9	43.1	0.88	0.75	23.2
9	R2	161	5.2	0.550	29.5	LOS C	5.9	43.1	0.92	0.79	29.0
Approa	ach	241	3.9	0.550	27.9	LOS B	5.9	43.1	0.90	0.77	28.9
West:	Cabrama	tta Rd East									
10	L2	80	1.0	0.559	15.4	LOS B	12.6	90.7	0.72	0.66	34.5
11	T1	969	4.0	0.559	11.4	LOS A	12.6	90.7	0.69	0.62	36.7
12	R2	85	3.6	0.218	14.5	LOS A	1.5	11.0	0.75	0.70	33.4
Approa	ach	1134	3.8	0.559	11.9	LOS A	12.6	90.7	0.70	0.63	36.4
All Vel	nicles	2257	4.0	0.559	16.4	LOS B	12.6	90.7	0.76	0.67	34.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ment Performance - Pedestrians							
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
UI	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	South Full Crossing	150	21.0	LOS C	0.2	0.2	0.78	0.78
P2	East Full Crossing	150	27.6	LOS C	0.3	0.3	0.89	0.89
P3	North Full Crossing	150	12.7	LOS B	0.2	0.2	0.60	0.60
P4	West Full Crossing	150	27.6	LOS C	0.3	0.3	0.89	0.89
All Ped	lestrians	600	22.2	LOS C			0.79	0.79

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Tuesday, June 20, 2017 5:16:46 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

Site: 1 [4. Cabramatta Rd E x Cumberland St - PM - 2031 + PP Only]

Intersection: Cabramatta Road East x Cumberland St

Period: PM Peak

Scenario: Year 2031 + Planning Proposal Only

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South	Cumbor	veh/h	%	V/C	sec		veh	m		per veh	km/h	
South.	Cumben			0.407	45.0		0.4		0.00	0.07	00.0	
1	L2	103	0.0	0.127	15.8	LOSB	2.1	14.5	0.62	0.67	32.9	
2	T1	57	0.0	0.209	20.9	LOS B	2.5	17.7	0.80	0.67	25.2	
3	R2	38	0.0	0.209	24.3	LOS B	2.5	17.7	0.80	0.67	32.2	
Approa	ach	198	0.0	0.209	18.9	LOS B	2.5	17.7	0.71	0.67	31.2	
East: 0	Cabramat	ta Rd East										
4	L2	9	0.0	0.569	22.6	LOS B	10.9	78.9	0.85	0.74	33.1	
5	T1	736	3.9	0.569	18.9	LOS B	10.9	78.9	0.84	0.72	34.8	
6	R2	87	1.9	0.274	16.5	LOS B	1.6	11.1	0.84	0.73	34.1	
Approa	ach	832	3.6	0.569	18.7	LOS B	10.9	78.9	0.84	0.72	34.7	
North:	Cumberla	and St										
7	L2	72	1.4	0.135	19.2	LOS B	2.0	14.6	0.69	0.66	33.5	
8	T1	19	5.3	0.677	16.5	LOS B	7.7	55.4	0.71	0.68	26.5	
9	R2	230	3.1	0.677	31.0	LOS C	7.7	55.4	0.95	0.87	28.5	
Approa	ach	321	2.8	0.677	27.5	LOS B	7.7	55.4	0.88	0.81	29.6	
West:	Cabrama	tta Rd East										
10	L2	86	0.8	0.699	24.3	LOS B	14.5	102.5	0.91	0.82	31.2	
11	T1	842	1.7	0.699	20.7	LOS B	14.5	102.5	0.89	0.80	34.3	
12	R2	75	0.0	0.202	14.9	LOS B	1.3	9.3	0.77	0.70	33.2	
Approa	ach	1003	1.5	0.699	20.6	LOS B	14.5	102.5	0.89	0.80	34.1	
All Veh	nicles	2354	2.3	0.699	20.7	LOS B	14.5	102.5	0.85	0.76	33.7	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ment Performance - Pedestrians							
Mov	Description	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
UI	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	per ped
P1	South Full Crossing	50	20.9	LOS C	0.1	0.1	0.77	0.77
P2	East Full Crossing	50	27.5	LOS C	0.1	0.1	0.89	0.89
P3	North Full Crossing	50	20.9	LOS C	0.1	0.1	0.77	0.77
P4	West Full Crossing	50	27.5	LOS C	0.1	0.1	0.89	0.89
All Ped	lestrians	200	24.2	LOS C			0.83	0.83

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Tuesday, June 20, 2017 5:16:47 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

PDC Consultants

Attachment 1e

Hume Hwy / Hollywood Dr / Chadderton St Upgrade Option SIDRA Results

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - AM - Yr 2016 w/ Upgrade]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: AM Peak

Scenario: Year 2016 with Upgrade

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance <u>m</u>	Prop. Queued	Effective Stop Rate per v <u>eh</u>	Average Speed km/ <u>h</u>
South:	Hollywoo	od Dr									
1	L2	61	5.0	0.157	47.6	LOS D	3.5	25.4	0.82	0.73	29.6
2	T1	33	5.0	0.787	61.0	LOS E	12.2	88.8	0.97	0.89	23.5
3	R2	150	5.0	0.787	69.9	LOS E	12.2	88.8	1.00	0.92	16.6
Approa	ach	244	5.0	0.787	63.1	LOS E	12.2	88.8	0.95	0.87	20.8
East: H	lume Hw	У									
4	L2	42	5.0	0.464	19.3	LOS B	17.8	132.7	0.55	0.52	38.2
5	T1	1548	8.0	0.464	12.7	LOS A	17.8	133.4	0.54	0.50	51.7
6	R2	53	5.0	0.184	59.5	LOS E	3.0	22.2	0.90	0.75	23.5
Approa	ach	1643	7.8	0.464	14.4	LOS A	17.8	133.4	0.55	0.50	49.5
North:	Chadder	ton St									
7	L2	36	5.0	0.052	32.0	LOS C	1.5	10.6	0.66	0.68	30.5
8	T1	33	5.0	0.220	53.6	LOS D	3.3	24.1	0.91	0.72	25.5
9	R2	24	5.0	0.220	58.1	LOS E	3.3	24.1	0.91	0.72	30.4
Approa	ach	93	5.0	0.220	46.4	LOS D	3.3	24.1	0.81	0.70	28.5
West:	Hume Hw	у									
10	L2	28	5.0	0.785	33.9	LOS C	36.1	264.7	0.87	0.80	40.5
11	T1	1997	5.5	0.785	27.1	LOS B	36.2	265.3	0.86	0.79	40.0
12	R2	48	5.0	0.612	80.7	LOS F	3.4	24.6	1.00	0.77	22.9
Approa	ach	2073	5.5	0.785	28.5	LOS B	36.2	265.3	0.87	0.79	39.2
All Veh	icles	4053	6.4	0.787	25.2	LOS B	36.2	265.3	0.74	0.68	40.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	20	12.5	LOS B	0.0	0.0	0.43	0.43
P4	West Full Crossing	20	61.7	LOS F	0.1	0.1	0.96	0.96
All Peo	lestrians	40	37.1	LOS D			0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:40:37 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - PM - Yr 2016 w/ Upgrade]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: PM Peak

Scenario: Year 2016 with Upgrade

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Move	ment Pe	rformance -	Vehicl	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay se <u>c</u>	Level of Service	95% Back Vehicles veh	of Queue Distance <u>m</u>	Prop. Queued	Effective Stop Rate per v <u>eh</u>	Average Speed km/ <u>h</u>
South:	Hollywoo	od Dr									
1	L2	68	7.4	0.131	39.4	LOS C	3.3	24.5	0.75	0.72	31.9
2	T1	40	5.0	0.653	51.8	LOS D	12.1	87.1	0.95	0.82	25.5
3	R2	160	3.1	0.653	57.7	LOS E	12.1	87.1	0.97	0.83	19.0
Approa	ach	268	4.5	0.653	52.2	LOS D	12.1	87.1	0.91	0.80	23.4
East: F	lume Hwy	ý									
4	L2	24	4.2	0.666	26.5	LOS B	32.0	231.4	0.74	0.68	33.0
5	T1	2111	3.9	0.666	19.8	LOS B	32.1	231.9	0.73	0.67	45.2
6	R2	61	4.9	0.259	64.1	LOS E	3.7	26.8	0.94	0.76	22.6
Approa	ach	2196	3.9	0.666	21.1	LOS B	32.1	231.9	0.73	0.67	43.9
North:	Chaddert	on St									
7	L2	49	4.1	0.066	30.3	LOS C	1.9	13.9	0.64	0.68	31.2
8	T1	27	11.1	0.166	46.7	LOS D	2.9	21.3	0.85	0.70	27.1
9	R2	26	3.8	0.166	51.3	LOS D	2.9	21.3	0.85	0.70	32.2
Approa	ach	102	5.9	0.166	40.0	LOS C	2.9	21.3	0.75	0.69	30.3
West: I	Hume Hw	у									
10	L2	30	3.3	0.644	32.5	LOS C	28.8	208.7	0.79	0.72	41.1
11	T1	1737	4.0	0.644	25.8	LOS B	28.9	209.2	0.78	0.71	40.9
12	R2	55	5.5	0.603	79.2	LOS F	3.8	28.0	1.00	0.77	23.2
Approa	ach	1822	4.0	0.644	27.5	LOS B	28.9	209.2	0.79	0.71	39.8
All Veh	icles	4388	4.1	0.666	26.1	LOS B	32.1	231.9	0.77	0.69	39.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	20	16.1	LOS B	0.0	0.0	0.49	0.49
P4	West Full Crossing	20	55.2	LOS E	0.1	0.1	0.90	0.90
All Peo	lestrians	40	35.7	LOS D			0.70	0.70

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:07:41 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s01v3 Cabramatta SIDRA_Yr 2016.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - AM - 2031 Base w/ Upgrade]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: AM Peak

Scenario: Year 2031 Base with Upgrade

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South:	Hollywoo	d Dr										
1	L2	74	5.0	0.171	45.3	LOS D	4.1	29.6	0.81	0.73	30.2	
2	T1	33	5.0	0.857	65.2	LOS E	13.9	101.8	0.96	0.95	22.7	
3	R2	164	5.0	0.857	76.0	LOS F	13.9	101.8	1.00	1.00	15.7	
Approa	ach	271	5.0	0.857	66.3	LOS E	13.9	101.8	0.94	0.92	20.3	
East: F	lume Hwy	/										
4	L2	42	5.0	0.569	22.2	LOS B	24.4	181.9	0.63	0.59	35.9	
5	T1	1851	8.0	0.569	15.6	LOS B	24.4	182.7	0.63	0.57	48.9	
6	R2	53	5.0	0.184	59.5	LOS E	3.0	22.2	0.90	0.75	23.5	
Approa	ach	1946	7.9	0.569	16.9	LOS B	24.4	182.7	0.63	0.58	47.3	
North:	Chaddert	on St										
7	L2	36	5.0	0.049	30.0	LOS C	1.4	10.2	0.63	0.67	31.3	
8	T1	33	5.0	0.246	53.9	LOS D	3.6	26.4	0.91	0.73	25.4	
9	R2	29	5.0	0.246	58.5	LOS E	3.6	26.4	0.91	0.73	30.3	
Approa	ach	98	5.0	0.246	46.5	LOS D	3.6	26.4	0.81	0.71	28.8	
West: I	Hume Hw	У										
10	L2	28	5.0	0.894	50.7	LOS D	51.5	377.7	0.98	0.99	34.2	
11	T1	2184	5.5	0.894	44.2	LOS D	51.6	378.3	0.97	0.99	31.5	
12	R2	48	5.0	0.612	80.7	LOS F	3.4	24.6	1.00	0.77	22.9	
Approa	ach	2260	5.5	0.894	45.0	LOS D	51.6	378.3	0.97	0.98	31.3	
All Veh	icles	4575	6.5	0.894	34.4	LOS C	51.6	378.3	0.82	0.80	35.3	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective			
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P1	South Full Crossing	20	13.8	LOS B	0.0	0.0	0.45	0.45			
P4	West Full Crossing	20	58.8	LOS E	0.1	0.1	0.93	0.93			
All Peo	destrians	40	36.3	LOS D			0.69	0.69			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:57:10 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - PM - 2031 Base w/ Upgrade]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: PM Peak

Scenario: Year 2031 Base with Upgrade

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South:	Hollywoo	d Dr	70	V/C	360	_	ven		_	per veri	K111/11	
1	L2	74	7.4	0.151	40.5	LOS C	3.8	28.0	0.76	0.72	31.6	
2	T1	43	5.0	0.753	54.1	LOS D	14.2	102.2	0.96	0.87	24.9	
3	R2	181	3.1	0.753	61.7	LOS E	14.2	102.2	0.99	0.89	18.1	
Approa	ach	298	4.4	0.753	55.3	LOS D	14.2	102.2	0.93	0.85	22.5	
East: L	Jumo Llun	,										
		26	12	0 715	27.5		36.1	261.3	0.77	0.72	32.3	
5	L2 T1	20	3.0	0.715	27.5		36.2	201.0	0.76	0.72	JZ.J	
5	11 D2	2200	3.9 4 0	0.713	20.0		30.2	201.0	0.70	0.70	44.J 22.2	
Approx		2360	4.9	0.297	22.1		36.2	29.4	0.95	0.70	42.3	
Approa	acri	2300	5.9	0.715	22.1	LU3 B	30.2	201.0	0.77	0.70	43.Z	
North:	Chaddert	on St										
7	L2	49	4.1	0.066	30.3	LOS C	1.9	13.9	0.64	0.68	31.2	
8	T1	29	11.1	0.178	46.9	LOS D	3.1	23.0	0.85	0.70	27.0	
9	R2	28	3.8	0.178	51.4	LOS D	3.1	23.0	0.85	0.70	32.2	
Approa	ach	106	5.9	0.178	40.4	LOS C	3.1	23.0	0.75	0.69	30.2	
West:	Hume Hw	V										
10	L2	32	3.3	0.745	34.6	LOS C	36.1	261.4	0.86	0.79	40.1	
11	T1	2017	4.0	0.745	27.8	LOS B	36.2	262.0	0.85	0.77	39.6	
12	R2	59	5.5	0.755	83.0	LOS F	4.2	31.1	1.00	0.84	22.5	
Approa	ach	2108	4.0	0.755	29.5	LOS C	36.2	262.0	0.85	0.77	38.6	
All Veh	nicles	4872	4.0	0.755	27.7	LOS B	36.2	262.0	0.81	0.74	38.9	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective			
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P1	South Full Crossing	20	16.1	LOS B	0.0	0.0	0.49	0.49			
P4	West Full Crossing	20	54.3	LOS E	0.1	0.1	0.90	0.90			
All Peo	lestrians	40	35.2	LOS D			0.69	0.69			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 10:57:13 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s02v3 Cabramatta SIDRA_Yr 2031.sip7

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - AM - 2031 + PP + Precincts w/ Upgrade]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: AM Peak

Scenario: Year 2031 + Planning Proposal + Precincts with Upgrade

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South:	Hollywoo	od Dr										
1	L2	74	5.0	0.179	46.2	LOS D	4.1	30.3	0.82	0.74	30.0	
2	T1	33	5.0	0.896	69.9	LOS E	14.6	106.9	0.96	1.00	21.9	
3	R2	164	5.0	0.896	82.7	LOS F	14.6	106.9	1.00	1.07	14.8	
Approa	ach	271	5.0	0.896	71.2	LOS F	14.6	106.9	0.94	0.97	19.4	
East: F	lume Hwy	ý										
4	L2	42	5.0	0.568	21.6	LOS B	24.2	181.0	0.62	0.59	36.3	
5	T1	1870	8.0	0.568	15.0	LOS B	24.3	181.8	0.62	0.57	49.4	
6	R2	53	5.0	0.184	59.5	LOS E	3.0	22.2	0.90	0.75	23.5	
Approach		1965	7.9	0.568	16.4	LOS B	24.3	181.8	0.62	0.57	47.7	
North:	Chaddert	on St										
7	L2	36	5.0	0.051	32.7	LOS C	1.5	11.0	0.66	0.68	30.3	
8	T1	33	5.0	0.254	54.4	LOS D	3.6	26.4	0.91	0.73	25.3	
9	R2	29	5.0	0.254	59.5	LOS E	3.6	26.4	0.92	0.73	30.0	
Approa	ach	98	5.0	0.254	47.9	LOS D	3.6	26.4	0.82	0.71	28.4	
West: I	Hume Hw	у										
10	L2	28	5.0	0.912	55.3	LOS D	56.6	414.6	0.99	1.04	32.8	
11	T1	2263	5.5	0.912	48.9	LOS D	56.7	415.3	0.98	1.03	29.8	
12	R2	48	5.0	0.612	80.7	LOS F	3.4	24.6	1.00	0.77	22.9	
Approa	ach	2339	5.5	0.912	49.6	LOS D	56.7	415.3	0.98	1.03	29.6	
All Veh	icles	4673	6.4	0.912	36.8	LOS C	56.7	415.3	0.83	0.83	34.1	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective			
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P1	South Full Crossing	20	13.3	LOS B	0.0	0.0	0.44	0.44			
P4	West Full Crossing	20	59.8	LOS E	0.1	0.1	0.94	0.94			
All Pedestrians		40	36.6	LOS D			0.69	0.69			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:39:05 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

MOVEMENT SUMMARY

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - PM - 2031 + PP + Precincts w/ Upgrade]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: PM Peak

Scenario: Year 2031 + Planning Proposal + Precincts with Upgrade

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South:	Hollywoo	od Dr										
1	L2	74	3.1	0.150	41.1	LOS C	3.8	27.7	0.77	0.72	31.8	
2	T1	43	5.0	0.748	53.6	LOS D	14.1	101.6	0.95	0.86	25.0	
3	R2	181	3.1	0.748	61.5	LOS E	14.1	101.6	0.99	0.89	18.2	
Approa	ach	298	3.4	0.748	55.3	LOS D	14.1	101.6	0.93	0.84	22.6	
East: F	lume Hw	ý										
4	L2	26	4.2	0.730	27.9	LOS B	37.4	270.4	0.79	0.73	32.1	
5	T1	2315	3.9	0.730	21.1	LOS B	37.5	270.9	0.77	0.71	44.2	
6	R2	66	4.9	0.297	65.5	LOS E	4.0	29.4	0.95	0.76	22.3	
Approa	ach	2407	3.9	0.730	22.4	LOS B	37.5	270.9	0.78	0.71	43.0	
North:	Chaddert	on St										
7	L2	49	4.1	0.066	30.3	LOS C	1.9	13.9	0.64	0.68	31.2	
8	T1	29	11.1	0.178	46.9	LOS D	3.1	23.0	0.85	0.70	27.0	
9	R2	28	3.8	0.178	51.4	LOS D	3.1	23.0	0.85	0.70	32.2	
Approa	ach	106	5.9	0.178	40.4	LOS C	3.1	23.0	0.75	0.69	30.2	
West: I	Hume Hw	у										
10	L2	32	3.3	0.755	34.9	LOS C	36.9	267.4	0.87	0.79	40.0	
11	T1	2047	4.0	0.755	28.1	LOS B	37.0	268.1	0.85	0.78	39.4	
12	R2	59	5.5	0.755	83.0	LOS F	4.2	31.1	1.00	0.84	22.5	
Approa	ach	2138	4.0	0.755	29.7	LOS C	37.0	268.1	0.86	0.78	38.5	
All Veh	icles	4949	4.0	0.755	27.9	LOS B	37.5	270.9	0.82	0.75	38.8	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	20	16.1	LOS B	0.0	0.0	0.49	0.49
P4	West Full Crossing	20	54.3	LOS E	0.1	0.1	0.90	0.90
All Peo	lestrians	40	35.2	LOS D			0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Thursday, June 15, 2017 12:39:07 PM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s03v5 Cabramatta SIDRA_Yr 2031 + PP + All Precincts.sip7

MOVEMENT SUMMARY

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - AM - 2031 + PP Only w/ Upgrade]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: AM Peak

Scenario: Year 2031 + Planning Proposal Only with Upgrade

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South:	Hollywoo	od Dr										
1	L2	74	5.0	0.179	46.2	LOS D	4.1	30.3	0.82	0.74	30.0	
2	T1	33	5.0	0.896	69.9	LOS E	14.6	106.9	0.96	1.00	21.9	
3	R2	164	5.0	0.896	82.7	LOS F	14.6	106.9	1.00	1.07	14.8	
Approa	ach	271	5.0	0.896	71.2	LOS F	14.6	106.9	0.94	0.97	19.4	
East: H	lume Hw	/y										
4	L2	42	5.0	0.566	21.6	LOS B	24.1	179.9	0.62	0.58	36.3	
5	T1	1862	8.0	0.566	15.0	LOS B	24.1	180.6	0.62	0.57	49.4	
6	R2	53	5.0	0.184	59.5	LOS E	3.0	22.2	0.90	0.75	23.5	
Approa	ach	1957	7.9	0.566	16.3	LOS B	24.1	180.6	0.62	0.57	47.8	
North:	Chadder	ton St										
7	L2	36	5.0	0.051	32.7	LOS C	1.5	11.0	0.66	0.68	30.3	
8	T1	33	5.0	0.254	54.4	LOS D	3.6	26.4	0.91	0.73	25.3	
9	R2	29	5.0	0.254	59.5	LOS E	3.6	26.4	0.92	0.73	30.0	
Approa	ach	98	5.0	0.254	47.9	LOS D	3.6	26.4	0.82	0.71	28.4	
West:	Hume Hv	vy										
10	L2	28	5.0	0.889	48.7	LOS D	50.9	373.2	0.97	0.98	34.9	
11	T1	2204	5.5	0.889	42.2	LOS C	51.0	373.8	0.96	0.97	32.4	
12	R2	48	5.0	0.612	80.7	LOS F	3.4	24.6	1.00	0.77	22.9	
Approa	ach	2280	5.5	0.889	43.1	LOS D	51.0	373.8	0.96	0.96	32.1	
All Veh	nicles	4606	6.5	0.896	33.5	LOS C	51.0	373.8	0.81	0.79	35.7	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	20	13.3	LOS B	0.0	0.0	0.44	0.44
P4	West Full Crossing	20	59.8	LOS E	0.1	0.1	0.94	0.94
All Peo	lestrians	40	36.6	LOS D			0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Friday, June 16, 2017 9:49:46 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

MOVEMENT SUMMARY

Site: 1 [2. Hume Hwy x Hollywood Dr x Chadderton St - PM - 2031 + PP Only w/ Upgrade]

Intersection: Hume Hwy x Hollywood Dr x Chadderton St

Period: PM Peak

Scenario: Year 2031 + Planning Proposal Only with Upgrade

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hollywo	od Dr									
1	L2	74	7.4	0.151	40.5	LOS C	3.8	28.0	0.76	0.72	31.6
2	T1	43	5.0	0.753	54.1	LOS D	14.2	102.2	0.96	0.87	24.9
3	R2	181	3.1	0.753	61.7	LOS E	14.2	102.2	0.99	0.89	18.1
Approa	ach	298	4.4	0.753	55.3	LOS D	14.2	102.2	0.93	0.85	22.5
East: I	Hume Hw	vy									
4	L2	26	4.2	0.720	27.6	LOS B	36.5	264.1	0.78	0.72	32.3
5	T1	2283	3.9	0.720	20.9	LOS B	36.6	264.7	0.77	0.70	44.4
6	R2	66	4.9	0.297	65.5	LOS E	4.0	29.4	0.95	0.76	22.3
Approa	ach	2375	3.9	0.720	22.2	LOS B	36.6	264.7	0.77	0.71	43.1
North:	Chadder	rton St									
7	L2	49	4.1	0.066	30.3	LOS C	1.9	13.9	0.64	0.68	31.2
8	T1	29	11.1	0.178	46.9	LOS D	3.1	23.0	0.85	0.70	27.0
9	R2	28	3.8	0.178	51.4	LOS D	3.1	23.0	0.85	0.70	32.2
Approa	ach	106	5.9	0.178	40.4	LOS C	3.1	23.0	0.75	0.69	30.2
West:	Hume H	wy									
10	L2	32	3.3	0.751	34.8	LOS C	36.6	265.2	0.86	0.79	40.1
11	T1	2036	4.0	0.751	28.0	LOS B	36.7	265.8	0.85	0.78	39.5
12	R2	59	5.5	0.755	83.0	LOS F	4.2	31.1	1.00	0.84	22.5
Approa	ach	2127	4.0	0.755	29.6	LOS C	36.7	265.8	0.86	0.78	38.6
All Vel	nicles	4906	4.0	0.755	27.8	LOS B	36.7	265.8	0.82	0.75	38.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	20	16.1	LOS B	0.0	0.0	0.49	0.49
P4	West Full Crossing	20	54.3	LOS E	0.1	0.1	0.90	0.90
All Peo	lestrians	40	35.2	LOS D			0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PDC CONSULTANTS | Processed: Friday, June 16, 2017 9:49:49 AM Project: \\Mac\Google Drive\PDC Consultants\Projects\17.038\Modelling\17.038s04 Cabramatta SIDRA_Yr 2031 + PP Only.sip7

Cabramatta East Planning Proposal

Traffic & Transport Assessment

Appendix B2 SIDRA Reports Minor Intersections

Prepared for

Moon Investments Pty Ltd

Prepare by

ARC Traffic + Transport & PDC Consulting

Anton Reisch Consulting Pty Ltd 19 Canoon Road Turramurra NSW 2074 Ph 02 9449 5161 Mob 0427 995160 <u>antonreisch@optusnet.com.au</u> ACN: 150 259 493

1 <u>Cumberland Street & Longfield Street</u>

Table 1.1 Cumberland Street & Longfield Street AM 2016

MOVEMENT SUMMARY

Site: 101 [CS & LS AM 2016]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Move	ment Pe	rformanc <u>e</u> -	Vehic	les							
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Cumberl	and Street									
1	L2	33	2.0	0.054	19.3	LOS B	0.7	4.7	0.71	0.68	39.2
2	T1	45	2.0	0.197	15.7	LOS B	2.2	16.0	0.75	0.68	40.0
3	R2	60	2.0	0.197	20.3	LOS B	2.2	16.0	0.75	0.68	39.6
Approa	ach	138	2.0	0.197	18.6	LOS B	2.2	16.0	0.74	0.68	39.7
East: I	ongfield	Street									
4	L2	165	2.0	0.193	14.7	LOS B	2.8	20.3	0.62	0.71	41.3
5	T1	130	2.0	0.160	10.0	LOS A	2.4	16.8	0.61	0.51	43.8
6	R2	9	2.0	0.160	14.6	LOS B	2.4	16.8	0.61	0.51	43.4
Approa	ach	304	2.0	0.193	12.7	LOS A	2.8	20.3	0.61	0.62	42.4
North:	Cumberla	and Street									
7	L2	5	2.0	0.011	18.9	LOS B	0.1	0.9	0.69	0.59	39.9
8	T1	31	2.0	0.053	14.7	LOS B	0.6	4.6	0.70	0.54	41.4
9	R2	3	2.0	0.053	19.3	LOS B	0.6	4.6	0.71	0.54	41.1
Approa	ach	39	2.0	0.053	15.6	LOS B	0.6	4.6	0.70	0.55	41.1
West:	Longfield	Street									
10	L2	3	2.0	0.029	13.8	LOS A	0.4	2.9	0.56	0.44	43.7
11	T1	70	2.0	0.136	10.1	LOS A	1.5	10.9	0.60	0.54	43.1
12	R2	41	2.0	0.136	15.1	LOS B	1.5	10.9	0.62	0.59	42.2
Approa	ach	114	2.0	0.136	12.0	LOS A	1.5	10.9	0.60	0.55	42.8
All Veł	nicles	595	2.0	0.197	14.1	LOS A	2.8	20.3	0.65	0.61	41.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - P	edestrians						
Mov		Demand	Average	Level of	Average Back c	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	50	14.7	LOS B	0.1	0.1	0.70	0.70
P2	East Full Crossing	50	20.9	LOS C	0.1	0.1	0.84	0.84
P3	North Full Crossing	50	14.7	LOS B	0.1	0.1	0.70	0.70
P4	West Full Crossing	50	20.9	LOS C	0.1	0.1	0.84	0.84
All Pe	destrians	200	17.8	LOS B			0.77	0.77

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 1.2 Cumberland Street & Longfield Street PM 2016

MOVEMENT SUMMARY

Site: 101 [CS & LS PM 2016]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Move	ment Pei	rformance -	Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Cumberl	and Street									
1	L2	62	2.0	0.092	18.1	LOS B	1.2	8.5	0.69	0.69	39.8
2	T1	70	2.0	0.257	14.6	LOS B	3.1	22.1	0.74	0.68	40.6
3	R2	78	2.0	0.257	19.2	LOS B	3.1	22.1	0.74	0.68	40.2
Approa	ach	210	2.0	0.257	17.4	LOS B	3.1	22.1	0.72	0.68	40.2
East: L	_ongfield \$	Street									
4	L2	150	2.0	0.189	16.0	LOS B	2.7	19.5	0.65	0.72	40.7
5	T1	128	2.0	0.182	11.4	LOS A	2.6	18.5	0.65	0.55	43.0
6	R2	15	2.0	0.182	15.9	LOS B	2.6	18.5	0.65	0.55	42.6
Approa	ach	293	2.0	0.189	14.0	LOS A	2.7	19.5	0.65	0.63	41.8
North:	Cumberla	and Street									
7	L2	19	2.0	0.028	17.7	LOS B	0.4	2.5	0.66	0.65	39.9
8	T1	50	2.0	0.087	13.5	LOS A	1.1	7.8	0.68	0.55	41.9
9	R2	7	2.0	0.087	18.1	LOS B	1.1	7.8	0.68	0.55	41.6
Approa	ach	76	2.0	0.087	15.0	LOS B	1.1	7.8	0.68	0.57	41.4
West:	Longfield	Street									
10	L2	1	2.0	0.054	15.2	LOS B	0.8	5.4	0.61	0.46	43.2
11	T1	109	2.0	0.251	11.8	LOS A	2.8	20.2	0.65	0.58	42.3
12	R2	80	2.0	0.251	17.2	LOS B	2.8	20.2	0.69	0.66	41.1
Approa	ach	190	2.0	0.251	14.1	LOS A	2.8	20.2	0.67	0.61	41.8
All Veł	nicles	769	2.0	0.257	15.0	LOS B	3.1	22.1	0.68	0.64	41.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pe	destrians						
Mov		Demand	Average	Level of	Average Back of	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	50	16.2	LOS B	0.1	0.1	0.73	0.73
P2	East Full Crossing	50	19.2	LOS B	0.1	0.1	0.80	0.80
P3	North Full Crossing	50	16.2	LOS B	0.1	0.1	0.73	0.73
P4	West Full Crossing	50	19.2	LOS B	0.1	0.1	0.80	0.80
All Peo	destrians	200	17.7	LOS B			0.77	0.77

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 1.3 Cumberland Street & Longfield Street AM 2031

MOVEMENT SUMMARY

Site: 101 [CS & LS AM 2031]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov	OD_	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	_	veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Cumberl	and Street									
1	L2	33	2.0	0.054	19.3	LOS B	0.7	4.7	0.71	0.68	39.2
2	T1	45	2.0	0.197	15.7	LOS B	2.2	16.0	0.75	0.68	40.0
3	R2	60	2.0	0.197	20.3	LOS B	2.2	16.0	0.75	0.68	39.6
Approa	ach	138	2.0	0.197	18.6	LOS B	2.2	16.0	0.74	0.68	39.7
East: L	_ongfield \$	Street									
4	L2	173	2.0	0.202	14.8	LOS B	3.0	21.4	0.62	0.71	41.2
5	T1	136	2.0	0.167	10.0	LOS A	2.5	17.6	0.61	0.51	43.8
6	R2	9	2.0	0.167	14.6	LOS B	2.5	17.6	0.61	0.51	43.4
Approa	ach	318	2.0	0.202	12.7	LOS A	3.0	21.4	0.62	0.62	42.4
North:	Cumberla	and Street									
7	L2	5	2.0	0.011	18.9	LOS B	0.1	0.9	0.69	0.59	39.9
8	T1	31	2.0	0.053	14.7	LOS B	0.6	4.6	0.70	0.54	41.4
9	R2	3	2.0	0.053	19.3	LOS B	0.6	4.6	0.71	0.54	41.1
Approa	ach	39	2.0	0.053	15.6	LOS B	0.6	4.6	0.70	0.55	41.1
West:	Longfield	Street									
10	L2	3	2.0	0.034	13.8	LOS A	0.5	3.5	0.56	0.44	43.7
11	T1	81	2.0	0.160	10.2	LOS A	1.8	12.7	0.60	0.54	43.1
12	R2	48	2.0	0.160	15.3	LOS B	1.8	12.7	0.62	0.60	42.1
Approa	ach	132	2.0	0.160	12.1	LOS A	1.8	12.7	0.61	0.56	42.7
All Veh	nicles	627	2.0	0.202	14.1	LOS A	3.0	21.4	0.65	0.62	41.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	<u>ment Performance - P</u>	edestrians						
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	50	14.7	LOS B	0.1	0.1	0.70	0.70
P2	East Full Crossing	50	20.9	LOS C	0.1	0.1	0.84	0.84
P3	North Full Crossing	50	14.7	LOS B	0.1	0.1	0.70	0.70
P4	West Full Crossing	50	20.9	LOS C	0.1	0.1	0.84	0.84
All Peo	destrians	200	17.8	LOS B			0.77	0.77

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 1.4 Cumberland Street & Longfield Street PM 2031

MOVEMENT SUMMARY

Site: 101 [CS & LS PM 2031]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Move	ment Pe	rformance -	Vehic	:les							
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	_	veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Cumberl	and Street									
1	L2	62	2.0	0.102	19.6	LOS B	1.3	9.0	0.72	0.70	39.1
2	T1	70	2.0	0.283	16.3	LOS B	3.3	23.4	0.78	0.70	39.8
3	R2	78	2.0	0.283	20.9	LOS B	3.3	23.4	0.78	0.70	39.5
Approa	ach	210	2.0	0.283	19.0	LOS B	3.3	23.4	0.76	0.70	39.5
East: L	ongfield	Street									
4	L2	150	2.0	0.176	14.6	LOS B	2.6	18.3	0.61	0.70	41.3
5	T1	128	2.0	0.170	10.0	LOS A	2.4	17.4	0.61	0.52	43.7
6	R2	15	2.0	0.170	14.6	LOS B	2.4	17.4	0.61	0.52	43.3
Approa	ach	293	2.0	0.176	12.6	LOS A	2.6	18.3	0.61	0.61	42.4
North:	Cumberla	and Street									
7	L2	19	2.0	0.031	19.1	LOS B	0.4	2.7	0.70	0.66	39.3
8	T1	50	2.0	0.095	15.0	LOS B	1.2	8.3	0.72	0.57	41.2
9	R2	7	2.0	0.095	19.6	LOS B	1.2	8.3	0.72	0.57	40.9
Approa	ach	76	2.0	0.095	16.5	LOS B	1.2	8.3	0.71	0.59	40.7
West:	Longfield	Street									
10	L2	1	2.0	0.063	14.0	LOS A	0.9	6.4	0.57	0.45	43.8
11	T1	136	2.0	0.290	10.7	LOS A	3.4	24.4	0.63	0.57	42.9
12	R2	100	2.0	0.290	16.1	LOS B	3.4	24.4	0.67	0.66	41.6
Approa	ach	237	2.0	0.290	13.0	LOS A	3.4	24.4	0.65	0.61	42.3
All Veh	nicles	816	2.0	0.290	14.7	LOS B	3.4	24.4	0.67	0.63	41.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ovement Performance - Pedestrians												
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective					
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	South Full Crossing	50	14.7	LOS B	0.1	0.1	0.70	0.70					
P2	East Full Crossing	50	20.9	LOS C	0.1	0.1	0.84	0.84					
P3	North Full Crossing	50	14.7	LOS B	0.1	0.1	0.70	0.70					
P4	West Full Crossing	50	20.9	LOS C	0.1	0.1	0.84	0.84					
All Peo	destrians	200	17.8	LOS B			0.77	0.77					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 1.5 Cumberland Street & Longfield Street AM 2031 + Planning Proposal

MOVEMENT SUMMARY

Site: 101 [CS & LS AM 2031 + PP]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Move	ment Pe	rformance -	Vehic	les							
Mov	OD_	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Cumberl	and Street									
1	L2	25	2.0	0.049	18.5	LOS B	0.6	4.4	0.69	0.64	40.0
2	T1	45	2.0	0.241	15.1	LOS B	2.8	19.9	0.74	0.69	40.0
3	R2	93	2.0	0.241	19.9	LOS B	2.8	19.9	0.75	0.70	39.6
Appro	ach	163	2.0	0.241	18.3	LOS B	2.8	19.9	0.74	0.69	39.7
East:	Longfield	Street									
4	L2	193	2.0	0.234	15.6	LOS B	3.5	25.0	0.65	0.72	40.9
5	T1	118	2.0	0.152	10.5	LOS A	2.2	15.7	0.62	0.52	43.5
6	R2	9	2.0	0.152	15.1	LOS B	2.2	15.7	0.62	0.52	43.1
Appro	ach	320	2.0	0.234	13.7	LOS A	3.5	25.0	0.64	0.64	41.9
North:	Cumberla	and Street									
7	L2	5	2.0	0.010	18.2	LOS B	0.1	0.9	0.67	0.58	40.2
8	T1	31	2.0	0.050	13.9	LOS A	0.6	4.5	0.69	0.53	41.7
9	R2	3	2.0	0.050	18.5	LOS B	0.6	4.5	0.69	0.53	41.4
Appro	ach	39	2.0	0.050	14.8	LOS B	0.6	4.5	0.69	0.54	41.5
West:	Longfield	Street									
10	L2	3	2.0	0.031	14.4	LOS A	0.4	3.1	0.58	0.45	43.4
11	T1	70	2.0	0.144	10.8	LOS A	1.6	11.2	0.62	0.55	42.8
12	R2	41	2.0	0.144	15.8	LOS B	1.6	11.2	0.64	0.60	41.9
Appro	ach	114	2.0	0.144	12.7	LOS A	1.6	11.2	0.62	0.56	42.5
All Vel	hicles	636	2.0	0.241	14.8	LOS B	3.5	25.0	0.66	0.63	41.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	lovement Performance - Pedestrians												
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective					
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	South Full Crossing	50	15.4	LOS B	0.1	0.1	0.72	0.72					
P2	East Full Crossing	50	20.1	LOS C	0.1	0.1	0.82	0.82					
P3	North Full Crossing	50	15.4	LOS B	0.1	0.1	0.72	0.72					
P4	West Full Crossing	50	20.1	LOS C	0.1	0.1	0.82	0.82					
All Peo	destrians	200	17.7	LOS B			0.77	0.77					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 1.6 Cumberland Street & Longfield Street PM 2031 + Planning Proposal

MOVEMENT SUMMARY

Site: 101 [CS & LS PM 2031 + PP]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Move	ment Pe	rformance -	Vehic	cles							
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	-	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Cumberl	and Street									
1	L2	46	2.0	0.060	15.9	LOS B	0.8	5.8	0.62	0.67	40.7
2	T1	70	2.0	0.298	12.8	LOS A	3.8	26.9	0.70	0.69	41.2
3	R2	120	2.0	0.298	17.4	LOS B	3.8	26.9	0.70	0.69	40.8
Approa	ach	236	2.0	0.298	15.7	LOS B	3.8	26.9	0.69	0.68	40.9
East: I	Longfield	Street									
4	L2	185	2.0	0.264	18.5	LOS B	3.8	26.9	0.72	0.74	39.6
5	T1	115	2.0	0.190	13.4	LOS A	2.6	18.3	0.70	0.58	42.0
6	R2	15	2.0	0.190	18.0	LOS B	2.6	18.3	0.70	0.58	41.6
Approa	ach	315	2.0	0.264	16.6	LOS B	3.8	26.9	0.71	0.68	40.5
North:	Cumberla	and Street									
7	L2	19	2.0	0.025	15.6	LOS B	0.3	2.3	0.61	0.65	40.9
8	T1	50	2.0	0.076	11.4	LOS A	1.0	7.2	0.63	0.51	43.0
9	R2	7	2.0	0.076	16.0	LOS B	1.0	7.2	0.63	0.51	42.6
Approa	ach	76	2.0	0.076	12.9	LOS A	1.0	7.2	0.62	0.54	42.4
West:	Longfield	Street									
10	L2	1	2.0	0.064	17.2	LOS B	0.9	6.2	0.66	0.50	42.2
11	T1	109	2.0	0.295	14.4	LOS A	3.1	22.3	0.72	0.62	41.1
12	R2	80	2.0	0.295	20.3	LOS B	3.1	22.3	0.76	0.70	39.7
Approa	ach	190	2.0	0.295	16.9	LOS B	3.1	22.3	0.74	0.65	40.5
All Vel	hicles	817	2.0	0.298	16.1	LOS B	3.8	26.9	0.70	0.66	40.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	lovement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back of	of Queue	Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	South Full Crossing	50	18.4	LOS B	0.1	0.1	0.78	0.78				
P2	East Full Crossing	50	16.9	LOS B	0.1	0.1	0.75	0.75				
P3	North Full Crossing	50	18.4	LOS B	0.1	0.1	0.78	0.78				
P4	West Full Crossing	50	16.9	LOS B	0.1	0.1	0.75	0.75				
All Peo	destrians	200	17.7	LOS B			0.77	0.77				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 1.7 Cumberland Street & Longfield Street AM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

Site: 101 [CS & LS AM 2031 + ALL]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	_	veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Cumberla	and Street									
1	L2	33	2.0	0.054	17.8	LOS B	0.7	4.9	0.67	0.66	40.0
2	T1	45	2.0	0.266	14.6	LOS B	3.2	22.4	0.74	0.70	40.1
3	R2	108	2.0	0.266	19.3	LOS B	3.2	22.4	0.74	0.71	39.8
Approa	ach	186	2.0	0.266	17.9	LOS B	3.2	22.4	0.73	0.70	39.9
East: L	_ongfield \$	Street									
4	L2	205	2.0	0.258	16.4	LOS B	3.9	27.6	0.68	0.73	40.5
5	T1	125	2.0	0.185	11.4	LOS A	2.6	18.5	0.65	0.55	43.0
6	R2	18	2.0	0.185	16.0	LOS B	2.6	18.5	0.65	0.55	42.6
Approa	ach	348	2.0	0.258	14.6	LOS B	3.9	27.6	0.66	0.66	41.5
North:	Cumberla	and Street									
7	L2	11	2.0	0.016	17.6	LOS B	0.2	1.5	0.66	0.64	40.0
8	T1	35	2.0	0.056	13.3	LOS A	0.7	5.1	0.67	0.52	42.1
9	R2	3	2.0	0.056	17.9	LOS B	0.7	5.1	0.67	0.52	41.8
Approa	ach	49	2.0	0.056	14.5	LOS B	0.7	5.1	0.67	0.54	41.6
West:	Longfield	Street									
10	L2	3	2.0	0.043	15.1	LOS B	0.6	4.3	0.60	0.47	43.1
11	T1	89	2.0	0.200	12.0	LOS A	2.2	15.6	0.66	0.58	42.2
12	R2	56	2.0	0.200	17.5	LOS B	2.2	15.6	0.69	0.64	41.0
Approa	ach	148	2.0	0.200	14.2	LOS A	2.2	15.6	0.67	0.60	41.7
All Veh	nicles	731	2.0	0.266	15.3	LOS B	3.9	27.6	0.68	0.65	41.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	lovement Performance - Pedestrians												
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective					
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	South Full Crossing	50	16.2	LOS B	0.1	0.1	0.73	0.73					
P2	East Full Crossing	50	19.2	LOS B	0.1	0.1	0.80	0.80					
P3	North Full Crossing	50	16.2	LOS B	0.1	0.1	0.73	0.73					
P4	West Full Crossing	50	19.2	LOS B	0.1	0.1	0.80	0.80					
All Peo	destrians	200	17.7	LOS B			0.77	0.77					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 1.8 Cumberland Street & Longfield Street PM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

Site: 101 [CS & LS PM 2031 + ALL]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	_	veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Cumberl	and Street									
1	L2	49	2.0	0.073	18.0	LOS B	0.9	6.7	0.68	0.69	39.8
2	T1	75	2.0	0.353	15.2	LOS B	4.2	30.1	0.77	0.71	40.1
3	R2	119	2.0	0.353	19.8	LOS B	4.2	30.1	0.77	0.71	39.8
Approa	ach	243	2.0	0.353	18.0	LOS B	4.2	30.1	0.75	0.71	39.9
East: L	_ongfield \$	Street									
4	L2	203	2.0	0.256	16.4	LOS B	3.8	27.3	0.67	0.73	40.5
5	T1	118	2.0	0.178	11.3	LOS A	2.5	17.6	0.65	0.55	43.0
6	R2	18	2.0	0.178	15.9	LOS B	2.5	17.6	0.65	0.55	42.6
Approa	ach	339	2.0	0.256	14.6	LOS B	3.8	27.3	0.66	0.66	41.4
North:	Cumberla	and Street									
7	L2	20	2.0	0.030	17.7	LOS B	0.4	2.7	0.66	0.66	39.9
8	T1	51	2.0	0.088	13.5	LOS A	1.1	8.0	0.68	0.55	41.9
9	R2	7	2.0	0.088	18.1	LOS B	1.1	8.0	0.68	0.55	41.6
Approa	ach	78	2.0	0.088	15.0	LOS B	1.1	8.0	0.68	0.57	41.4
West:	Longfield	Street									
10	L2	1	2.0	0.077	15.3	LOS B	1.1	7.9	0.61	0.48	43.2
11	T1	137	2.0	0.358	12.5	LOS A	4.0	28.4	0.68	0.60	42.0
12	R2	115	2.0	0.358	18.6	LOS B	4.0	28.4	0.74	0.71	40.3
Approa	ach	253	2.0	0.358	15.3	LOS B	4.0	28.4	0.71	0.65	41.2
All Veh	nicles	913	2.0	0.358	15.7	LOS B	4.2	30.1	0.70	0.66	40.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	lovement Performance - Pedestrians												
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective					
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	South Full Crossing	50	16.2	LOS B	0.1	0.1	0.73	0.73					
P2	East Full Crossing	50	19.2	LOS B	0.1	0.1	0.80	0.80					
P3	North Full Crossing	50	16.2	LOS B	0.1	0.1	0.73	0.73					
P4	West Full Crossing	50	19.2	LOS B	0.1	0.1	0.80	0.80					
All Peo	destrians	200	17.7	LOS B			0.77	0.77					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

2 Cabramatta Road East & Broomfield Street

 Table 2.1
 Cabramatta Road East & Broomfield Street AM 2016

MOVEMENT SUMMARY

Site: [CRE & BS AM 2016]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Movement Performance - Vehicles

		nonnanoo		100							
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
2	T1	92	2.0	0.084	6.3	LOS A	1.2	8.7	0.48	0.38	54.3
3	R2	9	2.0	0.014	13.5	LOS A	0.1	0.9	0.60	0.65	47.7
Approa	ach	101	2.0	0.084	7.0	LOS A	1.2	8.7	0.49	0.40	53.7
East: C	Cabramat	tta Road East									
4	L2	56	2.0	0.071	16.3	LOS B	1.0	6.8	0.61	0.69	46.3
6	R2	89	2.0	0.208	26.1	LOS B	2.2	15.4	0.84	0.75	40.8
Approa	ach	145	2.0	0.208	22.3	LOS B	2.2	15.4	0.75	0.73	42.8
North:	Broomfie	eld Street									
7	L2	74	2.0	0.215	19.8	LOS B	3.0	21.4	0.72	0.67	45.9
8	T1	74	2.0	0.215	14.2	LOS A	3.0	21.4	0.72	0.67	46.9
Approa	ach	148	2.0	0.215	17.0	LOS B	3.0	21.4	0.72	0.67	46.4
All Veh	nicles	394	2.0	0.215	16.4	LOS B	3.0	21.4	0.67	0.62	46.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Iovement Performance - Pedestrians												
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective					
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	South Full Crossing	50	23.5	LOS C	0.1	0.1	0.89	0.89					
P2	East Full Crossing	50	16.9	LOS B	0.1	0.1	0.75	0.75					
All Pe	destrians	100	20.2	LOS C			0.82	0.82					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 2.2 Cabramatta Road East & Broomfield Street PM 2016

MOVEMENT SUMMARY

Site: [CRE & BS PM 2016]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Moven	nent Pe	rformance -	Vehic	les							
Mov ID	OD Mov_	Demand F Total	lows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicle <u>s</u>	of Queue Distanc <u>e</u>	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
2	T1	86	2.0	0.077	5.8	LOS A	1.1	7.8	0.46	0.36	54.8
3	R2	25	2.0	0.040	13.2	LOS A	0.4	2.5	0.60	0.67	47.9
Approa	ch	111	2.0	0.077	7.5	LOS A	1.1	7.8	0.49	0.43	53.0
East: C	abrama	tta Road East									
4	L2	43	2.0	0.056	16.8	LOS B	0.8	5.4	0.62	0.69	46.0
6	R2	98	2.0	0.247	27.2	LOS B	2.5	17.5	0.87	0.76	40.3
Approa	ch	141	2.0	0.247	24.0	LOS B	2.5	17.5	0.79	0.74	41.9
North: E	Broomfie	eld Street									
7	L2	103	2.0	0.265	19.3	LOS B	3.8	27.4	0.72	0.68	46.0
8	T1	87	2.0	0.265	13.8	LOS A	3.8	27.4	0.72	0.68	47.0
Approa	ch	190	2.0	0.265	16.8	LOS B	3.8	27.4	0.72	0.68	46.4
All Vehi	icles	442	2.0	0.265	16.8	LOS B	3.8	27.4	0.69	0.64	46.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	lovement Performance - Pedestrians													
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate						
		ped/h	sec		ped	m		per ped						
P1	South Full Crossing	50	24.4	LOS C	0.1	0.1	0.90	0.90						
P2	East Full Crossing	50	16.2	LOS B	0.1	0.1	0.73	0.73						
All Peo	destrians	100	20.3	LOS C			0.82	0.82						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 2.3 Cabramatta Road East & Broomfield Street AM 2031

MOVEMENT SUMMARY

Site: [CRE & BS AM 2031]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Move	Iovement Performance - Vehicles												
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average		
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
South:	Broo	mfield Stre	et										
2	T1	107	2.0	0.098	6.4	LOS A	1.4	10.2	0.48	0.39	54.3		
3	R2	9	2.0	0.015	13.6	LOS A	0.1	0.9	0.60	0.65	47.7		
Approa	ach	116	2.0	0.098	6.9	LOS A	1.4	10.2	0.49	0.41	53.7		
East: 0	Cabra	matta Roa	d East	t									
4	L2	56	2.0	0.071	16.3	LOS B	1.0	6.8	0.61	0.69	46.3		
6	R2	103	2.0	0.241	26.3	LOS B	2.5	18.0	0.85	0.76	40.7		
Approa	ach	159	2.0	0.241	22.7	LOS B	2.5	18.0	0.77	0.74	42.5		
North:	Broo	mfield Stre	et										
7	L2	93	2.0	0.243	19.9	LOS B	3.4	24.4	0.73	0.69	45.6		
8	T1	74	2.0	0.243	14.4	LOS A	3.4	24.4	0.73	0.69	46.6		
Approa	ach	167	2.0	0.243	17.5	LOS B	3.4	24.4	0.73	0.69	46.0		
All Vel	nicles	442	2.0	0.243	16.6	LOS B	3.4	24.4	0.68	0.63	46.4		

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ovement Performance - Pedestrians													
Mov ID	Description	Demand Flow	Average Delav	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate						
		ped/h	sec		ped	m		per ped						
P1	South Full Crossing	50	23.5	LOS C	0.1	0.1	0.89	0.89						
P2	East Full Crossing	50	16.9	LOS B	0.1	0.1	0.75	0.75						
All Peo	destrians	100	20.2	LOS C			0.82	0.82						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 2.4 Cabramatta Road East & Broomfield Street PM 2031

MOVEMENT SUMMARY

Site: [CRE & BS PM 2031]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Mover	nent Per	rformance - `	Vehic	les							
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
טו	_ IVIOV	Iotal	ΗV	Sath	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	ld Street									
2	T1	100	2.0	0.094	6.9	LOS A	1.4	9.8	0.50	0.40	53.9
3	R2	25	2.0	0.043	14.9	LOS B	0.4	2.8	0.65	0.68	46.9
Approa	ich	125	2.0	0.094	8.5	LOS A	1.4	9.8	0.53	0.45	52.3
East: C	Cabramati	ta Road East									
4	L2	43	2.0	0.052	15.5	LOS B	0.7	5.0	0.59	0.68	46.7
6	R2	123	2.0	0.284	25.6	LOS B	3.0	21.3	0.84	0.77	41.0
Approa	ich	166	2.0	0.284	23.0	LOS B	3.0	21.3	0.78	0.74	42.4
North:	Broomfiel	ld Street									
7	L2	103	2.0	0.290	20.9	LOS B	4.1	29.0	0.76	0.70	45.1
8	T1	87	2.0	0.290	15.4	LOS B	4.1	29.0	0.76	0.70	46.1
Approa	ich	190	2.0	0.290	18.4	LOS B	4.1	29.0	0.76	0.70	45.5
All Veh	icles	481	2.0	0.290	17.4	LOS B	4.1	29.0	0.71	0.65	45.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ovement Performance - Pedestrians													
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate						
		ped/h	sec		ped	m		per ped						
P1	South Full Crossing	50	22.6	LOS C	0.1	0.1	0.87	0.87						
P2	East Full Crossing	50	17.7	LOS B	0.1	0.1	0.77	0.77						
All Peo	destrians	100	20.1	LOS C			0.82	0.82						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Cabramatta Road East & Broomfield Street AM 2031 + Planning Proposal Table 2.5

MOVEMENT SUMMARY

Site: [CRE & BS AM 2031 + PP]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Moven	nent Pe	rformance -	Vehic	les							
Mov ID	OD Mov	Demand I Total	lows= HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfi	eld Street									
2	T1	108	2.0	0.099	6.4	LOS A	1.4	10.3	0.48	0.39	54.3
3	R2	9	2.0	0.015	13.6	LOS A	0.1	0.9	0.61	0.65	47.7
Approa	ch	117	2.0	0.099	6.9	LOS A	1.4	10.3	0.49	0.41	53.7
East: C	abrama	tta Road East									
4	L2	56	2.0	0.071	16.3	LOS B	1.0	6.8	0.61	0.69	46.3
6	R2	112	2.0	0.275	26.4	LOS B	2.8	19.7	0.86	0.76	40.7
Approa	ch	168	2.0	0.275	23.0	LOS B	2.8	19.7	0.77	0.74	42.4
North: E	Broomfie	eld Street									
7	L2	106	2.0	0.270	20.1	LOS B	3.8	27.4	0.74	0.70	45.4
8	T1	79	2.0	0.270	14.5	LOS B	3.8	27.4	0.74	0.70	46.5
Approa	ch	185	2.0	0.270	17.7	LOS B	3.8	27.4	0.74	0.70	45.9
All Vehi	icles	470	2.0	0.275	16.9	LOS B	3.8	27.4	0.69	0.64	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	lovement Performance - Pedestrians													
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate						
		ped/h	sec		ped	m		per ped						
P1	South Full Crossing	50	23.5	LOS C	0.1	0.1	0.89	0.89						
P2	East Full Crossing	50	16.9	LOS B	0.1	0.1	0.75	0.75						
All Peo	destrians	100	20.2	LOS C			0.82	0.82						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 2.6 Cabramatta Road East & Broomfield Street PM 2031 + Planning Proposal

MOVEMENT SUMMARY

Site: [CRE & BS PM 2031 + PP]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Moven	nent Pei	rformance -	Vehic	les							
Mov	OD Mov	Demand F	lows	Deg. Satn	Average Delay	Level of Service	95% Back	of Queue	Prop.	Effective Stop Rate	Average Speed
	-	veh/h	% %	v/c	sec	0011100	venicies	m	Queucu	ner veh	km/h
South:	Broomfie	eld Street	70								
2	T1	101	2.0	0.095	6.9	LOS A	1.4	9.9	0.50	0.40	53.9
3	R2	25	2.0	0.045	14.9	LOS B	0.4	2.8	0.65	0.68	46.8
Approa	ch	126	2.0	0.095	8.5	LOS A	1.4	9.9	0.53	0.45	52.3
East: C	abramat	ta Road East									
4	L2	43	2.0	0.052	15.5	LOS B	0.7	5.0	0.59	0.68	46.7
6	R2	137	2.0	0.323	25.7	LOS B	3.4	23.9	0.85	0.77	40.9
Approa	ch	180	2.0	0.323	23.3	LOS B	3.4	23.9	0.79	0.75	42.2
North:	Broomfie	ld Street									
7	L2	124	2.0	0.336	21.2	LOS B	4.8	34.2	0.77	0.72	44.8
8	T1	96	2.0	0.336	15.6	LOS B	4.8	34.2	0.77	0.72	45.9
Approa	ch	220	2.0	0.336	18.8	LOS B	4.8	34.2	0.77	0.72	45.3
All Veh	icles	526	2.0	0.336	17.9	LOS B	4.8	34.2	0.72	0.67	45.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ovement Performance - Pedestrians													
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate						
		ped/h	sec		ped	m		per ped						
P1	South Full Crossing	50	22.6	LOS C	0.1	0.1	0.87	0.87						
P2	East Full Crossing	50	17.7	LOS B	0.1	0.1	0.77	0.77						
All Peo	destrians	100	20.1	LOS C			0.82	0.82						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Table 2.7 Cabramatta Road East & Broomfield Street AM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

Site: [CRE & BS AM 2031 + ALL]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Mover	nent Pe	erformance -	Vehic	cles							
Mov ID	OD Mov	Demand I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: I	Broomf	ield Street									
2	T1	131	2.0	0.120	6.5	LOS A	1.8	12.6	0.49	0.40	54.2
3	R2	9	2.0	0.015	14.1	LOS A	0.1	1.0	0.62	0.65	47.3
Approad	ch	140	2.0	0.120	7.0	LOS A	1.8	12.6	0.50	0.41	53.7
East: C	abrama	itta Road East									
4	L2	59	2.0	0.074	16.3	LOS B	1.0	7.2	0.61	0.70	46.3
6	R2	112	2.0	0.276	26.4	LOS B	2.8	19.7	0.86	0.76	40.7
Approa	ch	171	2.0	0.276	22.9	LOS B	2.8	19.7	0.77	0.74	42.4
North: E	Broomfi	eld Street									
7	L2	106	2.0	0.277	20.1	LOS B	4.0	28.2	0.74	0.70	45.5
8	T1	84	2.0	0.277	14.6	LOS B	4.0	28.2	0.74	0.70	46.5
Approad	ch	190	2.0	0.277	17.7	LOS B	4.0	28.2	0.74	0.70	45.9
All Vehi	cles	501	2.0	0.277	16.5	LOS B	4.0	28.2	0.68	0.63	46.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	lovement Performance - Pedestrians													
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate						
		ped/h	sec		ped	m		per ped						
P1	South Full Crossing	50	23.5	LOS C	0.1	0.1	0.89	0.89						
P2	East Full Crossing	50	16.9	LOS B	0.1	0.1	0.75	0.75						
All Pe	destrians	100	20.2	LOS C			0.82	0.82						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Cabramatta Road East & Broomfield Street PM 2031 + Planning Proposal + All Precincts Table 2.8

MOVEMENT SUMMARY

Site: [CRE & BS PM 2031 + ALL]

New Site

Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Moven	nent Pe	erformance -	Vehic	les							
Mov ID	OD Mov	Demand I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: I	Broomf	ield Street									
2	T1	108	2.0	0.099	6.4	LOS A	1.4	10.3	0.48	0.39	54.3
3	R2	26	2.0	0.047	14.9	LOS B	0.4	2.9	0.65	0.68	46.8
Approad	ch	134	2.0	0.099	8.0	LOS A	1.4	10.3	0.52	0.44	52.7
East: C	abrama	atta Road East									
4	L2	52	2.0	0.066	16.2	LOS B	0.9	6.3	0.61	0.69	46.3
6	R2	137	2.0	0.353	26.7	LOS B	3.4	24.5	0.87	0.77	40.5
Approad	ch	189	2.0	0.353	23.8	LOS B	3.4	24.5	0.80	0.75	41.9
North: E	Broomfi	eld Street									
7	L2	124	2.0	0.350	20.6	LOS B	5.2	36.9	0.77	0.71	45.3
8	T1	117	2.0	0.350	15.0	LOS B	5.2	36.9	0.77	0.71	46.4
Approad	ch	241	2.0	0.350	17.9	LOS B	5.2	36.9	0.77	0.71	45.8
All Vehi	cles	564	2.0	0.353	17.5	LOS B	5.2	36.9	0.72	0.66	45.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Novement Performance - Pedestrians													
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate						
		ped/h	sec		ped	m		per ped						
P1	South Full Crossing	50	23.5	LOS C	0.1	0.1	0.89	0.89						
P2	East Full Crossing	50	16.9	LOS B	0.1	0.1	0.75	0.75						
All Pedestrians		100	20.2	LOS C			0.82	0.82						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

3 <u>Cabramatta Road East & Cabramatta Road East</u>

 Table 3.1
 Cabramatta Road East & Cabramatta Road East AM 2016

MOVEMENT SUMMARY

▽Site: [CRE & CRE AM 2016]

New Site Giveway / Yield (Two-Way)

Mover	ovement Performance - Vehicles													
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average			
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
		veh/h	%	v/c	sec		veh	m		per veh	km/h			
East: C	Cabramatt	ta Road East												
5	T1	632	5.0	0.167	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
6a	R1	33	1.0	0.088	13.3	LOS A	0.3	2.1	0.76	0.88	48.5			
Approa	ich	665	4.8	0.167	0.7	NA	0.3	2.1	0.04	0.04	59.3			
NorthW	/est: Cab	ramatta Roac	l East											
27a	L1	36	1.0	0.042	6.5	LOS A	0.1	1.0	0.43	0.63	52.9			
29b	R3	40	1.0	0.252	30.4	LOS C	0.8	5.9	0.87	0.98	39.1			
Approa	ch	76	1.0	0.252	19.1	LOS B	0.8	5.9	0.66	0.81	44.6			
West: 0	Cabramat	tta Road East												
10b	L3	117	1.0	0.290	6.5	LOS A	0.0	0.0	0.00	0.15	57.3			
11	T1	963	4.0	0.290	0.0	LOS A	0.0	0.0	0.00	0.06	59.3			
Approa	ich	1080	3.7	0.290	0.7	NA	0.0	0.0	0.00	0.07	59.1			
All Veh	icles	1821	4.0	0.290	1.5	NA	0.8	5.9	0.04	0.09	58.4			

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 3.2 Cabramatta Road East & Cabramatta Road East PM 2016

MOVEMENT SUMMARY

▽Site: [CRE & CRE PM 2016]

New S Givewa	ite av / Yielo	d (Two-Wav)								
Mover	nent Pe	rformance -	Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: C	Cabramat	ta Road East	t								
5	T1	945	3.0	0.247	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
6a	R1	46	1.0	0.090	10.4	LOS A	0.3	2.3	0.67	0.83	50.5
Approa	ich	991	2.9	0.247	0.5	NA	0.3	2.3	0.03	0.04	59.4
NorthWest: Cabra		oramatta Roa	d East								
27a	L1	77	1.0	0.082	6.1	LOS A	0.3	2.1	0.40	0.62	53.2
29b	R3	48	1.0	0.207	21.3	LOS B	0.7	5.0	0.79	0.94	43.3
Approa	ich	125	1.0	0.207	12.0	LOS A	0.7	5.0	0.55	0.74	48.9
West: 0	Cabrama	tta Road Eas	st								
10b	L3	96	1.0	0.236	6.5	LOS A	0.0	0.0	0.00	0.15	57.4
11	T1	784	4.0	0.236	0.0	LOS A	0.0	0.0	0.00	0.06	59.3
Approa	ich	880	3.7	0.236	0.7	NA	0.0	0.0	0.00	0.07	59.1
All Veh	icles	1996	3.1	0.247	1.3	NA	0.7	5.0	0.05	0.10	58.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 3.3 Cabramatta Road East & Cabramatta Road East AM 2031

MOVEMENT SUMMARY

▽Site: [CRE & CRE AM 2031]

New S Givewa	ite ay / Yiel	d (Two-Way))								
Moven	nent Pe	rformance -	Vehic	les							
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Cabramatta Road East											
5	T1	909	5.0	0.241	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
6a	R1	47	1.0	0.160	16.4	LOS B	0.5	3.8	0.82	0.91	46.6
Approa	ch	956	4.8	0.241	0.8	NA	0.5	3.8	0.04	0.04	59.1
NorthWest: Cabrar		bramatta Roa	d East								
27a	L1	36	1.0	0.045	6.9	LOS A	0.2	1.1	0.46	0.66	52.7
29b	R3	40	1.0	0.347	43.2	LOS D	1.1	8.1	0.92	1.01	34.4
Approa	ch	76	1.0	0.347	26.0	LOS B	1.1	8.1	0.70	0.84	41.1
West: 0	Cabrama	atta Road Eas	t								
10b	L3	132	1.0	0.326	6.5	LOS A	0.0	0.0	0.00	0.15	57.3
11	T1	1085	4.0	0.326	0.0	LOS A	0.0	0.0	0.00	0.06	59.3
Approa	ch	1217	3.7	0.326	0.7	NA	0.0	0.0	0.00	0.07	59.1
All Veh	icles	2249	4.1	0.347	1.6	NA	1.1	8.1	0.04	0.09	58.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 3.4 Cabramatta Road East & Cabramatta Road East PM 2031

MOVEMENT SUMMARY

▽Site: [CRE & CRE PM 2031]

New S Givewa	ite av / Yielo	d (Two-Wav)								
Mover	nent Pe	rformance -	Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: C	Cabramat	ta Road East	t								
5	T1	1018	3.0	0.266	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
6a	R1	50	1.0	0.122	12.5	LOS A	0.4	3.0	0.74	0.87	49.1
Approa	ich	1068	2.9	0.266	0.6	NA	0.4	3.0	0.03	0.04	59.3
NorthWest: Cabr		oramatta Roa	d East								
27a	L1	77	1.0	0.087	6.4	LOS A	0.3	2.2	0.43	0.65	53.0
29b	R3	48	1.0	0.275	28.6	LOS C	0.9	6.6	0.86	0.98	39.9
Approa	ich	125	1.0	0.275	15.0	LOS B	0.9	6.6	0.60	0.77	47.0
West: 0	Cabrama	tta Road Eas	st								
10b	L3	111	1.0	0.274	6.5	LOS A	0.0	0.0	0.00	0.15	57.3
11	T1	910	4.0	0.274	0.0	LOS A	0.0	0.0	0.00	0.06	59.3
Approa	ich	1021	3.7	0.274	0.7	NA	0.0	0.0	0.00	0.07	59.1
All Veh	icles	2214	3.2	0.275	1.5	NA	0.9	6.6	0.05	0.10	58.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 3.5 Cabramatta Road East & Cabramatta Road East AM 2031 + Planning Proposal

MOVEMENT SUMMARY

▽Site: [CRE & CRE AM 2031 + PP]

New Si Givewa	ite ay / Yiel	d (Two-Way))								
Moven	nent Pe	rformance -	Vehic	:les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: C	abrama	tta Road East	:								
5	T1	914	5.0	0.242	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
6a	R1	37	1.0	0.130	16.8	LOS B	0.4	3.0	0.82	0.91	46.4
Approa	ch	951	4.8	0.242	0.7	NA	0.4	3.0	0.03	0.04	59.3
NorthWest: Cabran		bramatta Roa	d East								
27a	L1	36	1.0	0.044	6.8	LOS A	0.2	1.1	0.46	0.65	52.7
29b	R3	54	1.0	0.474	48.7	LOS D	1.7	11.8	0.93	1.04	32.7
Approa	ch	90	1.0	0.474	31.9	LOS C	1.7	11.8	0.74	0.89	38.5
West: C	Cabrama	atta Road Eas	t								
10b	L3	152	1.0	0.333	6.5	LOS A	0.0	0.0	0.00	0.17	57.2
11	T1	1085	4.0	0.333	0.0	LOS A	0.0	0.0	0.00	0.07	59.2
Approa	ch	1237	3.6	0.333	0.8	NA	0.0	0.0	0.00	0.08	59.0
All Vehi	icles	2278	4.0	0.474	2.0	NA	1.7	11.8	0.04	0.09	57.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 3.6 Cabramatta Road East & Cabramatta Road East PM 2031 + Planning Proposal

MOVEMENT SUMMARY

▽Site: [CRE & CRE PM 2031 + PP]

New S Givewa	ite ay / Yiel	d (Two-Way))								
Moven	nent Pe	rformance -	Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	-	veh/h	%	v/c	sec		veh	m		per veh	km/h
East: C	abramat	tta Road East	t								
5	T1	1025	3.0	0.268	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
6a	R1	38	1.0	0.097	12.8	LOS A	0.3	2.3	0.75	0.87	48.9
Approa	ch	1063	2.9	0.268	0.5	NA	0.3	2.3	0.03	0.03	59.5
NorthWest: Cabr		bramatta Roa	d East								
27a	L1	77	1.0	0.086	6.3	LOS A	0.3	2.2	0.42	0.64	53.1
29b	R3	69	1.0	0.400	32.0	LOS C	1.5	10.5	0.88	1.02	38.4
Approa	ch	146	1.0	0.400	18.5	LOS B	1.5	10.5	0.64	0.82	45.0
West: 0	Cabrama	atta Road Eas	st								
10b	L3	138	1.0	0.282	6.5	LOS A	0.0	0.0	0.00	0.18	57.1
11	T1	910	4.0	0.282	0.0	LOS A	0.0	0.0	0.00	0.07	59.2
Approa	ch	1048	3.6	0.282	0.9	NA	0.0	0.0	0.00	0.09	58.9
All Veh	icles	2257	3.1	0.400	1.8	NA	1.5	10.5	0.05	0.11	58.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 3.7 Cabramatta Road East & Cabramatta Road East AM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

▽Site: [CRE & CRE AM 2031 + ALL]

New S Givewa	ite av / Yiel	d (Two-Wav)								
Moven	nent Pe	rformance -	- Vehic	cles							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Sath	Delay	Service	Vehicles	Distance	Queued	Stop Rate_	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Cabramatta Road East											
5	T1	939	5.0	0.249	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
6a	R1	36	1.0	0.128	16.9	LOS B	0.4	3.0	0.83	0.91	46.3
Approa	Approach		4.9	0.249	0.7	NA	0.4	3.0	0.03	0.03	59.3
NorthWest: Cabramatta		oramatta Roa	d East								
27a	L1	36	1.0	0.044	6.8	LOS A	0.2	1.1	0.46	0.65	52.7
29b	R3	53	1.0	0.471	49.1	LOS D	1.6	11.6	0.93	1.04	32.6
Approa	ch	89	1.0	0.471	32.0	LOS C	1.6	11.6	0.74	0.88	38.5
West: 0	Cabrama	atta Road Eas	st								
10b	L3	155	1.0	0.334	6.5	LOS A	0.0	0.0	0.00	0.17	57.1
11	T1	1089	4.0	0.334	0.0	LOS A	0.0	0.0	0.00	0.07	59.2
Approa	ch	1244	3.6	0.334	0.9	NA	0.0	0.0	0.00	0.08	59.0
All Veh	icles	2308	4.0	0.471	2.0	NA	1.6	11.6	0.04	0.09	57.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 3.8 Cabramatta Road East & Cabramatta Road East PM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

Site: [CRE & CRE PM 2031 + ALL]

New S Givewa	ite av / Yielo	d (Two-Wav)								
Mover	nent Pe	rformance -	Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: C	abramat	ta Road East	t								
5	T1	1028	3.0	0.269	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
6a	R1	38	1.0	0.101	13.3	LOS A	0.3	2.4	0.76	0.88	48.5
Approa	ch	1066	2.9	0.269	0.5	NA	0.3	2.4	0.03	0.03	59.4
NorthWest: Cabra		oramatta Roa	d East								
27a	L1	77	1.0	0.086	6.4	LOS A	0.3	2.2	0.43	0.64	53.0
29b	R3	69	1.0	0.423	34.2	LOS C	1.6	11.1	0.89	1.03	37.6
Approa	ch	146	1.0	0.423	19.5	LOS B	1.6	11.1	0.65	0.82	44.4
West: 0	Cabrama	tta Road Eas	st								
10b	L3	146	1.0	0.290	6.5	LOS A	0.0	0.0	0.00	0.19	57.0
11	T1	931	4.0	0.290	0.0	LOS A	0.0	0.0	0.00	0.08	59.2
Approa	ch	1077	3.6	0.290	0.9	NA	0.0	0.0	0.00	0.09	58.9
All Veh	icles	2289	3.1	0.423	1.9	NA	1.6	11.1	0.05	0.11	57.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

4 Broomfield Street & Longfield Street

 Table 4.1
 Broomfield Street & Longfield Street AM 2016

MOVEMENT SUMMARY

⁹⁹⁹Site: [BS & LS AM 2016]

New Site Stop (Two-Way)

Mover	lovement Performance - Vehicles													
Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average			
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
		veh/h	%	v/c	sec		veh	m		per veh	km/h			
South:	Broomfie	ld Street												
2	T1	150	2.0	0.094	0.1	LOS A	0.2	1.2	0.08	0.08	49.3			
3	R2	24	2.0	0.094	5.0	LOS A	0.2	1.2	0.08	0.08	48.4			
Approa	ich	174	2.0	0.094	0.8	NA	0.2	1.2	0.08	0.08	49.2			
East: L	East: Longfield Street													
4	L2	59	2.0	0.219	8.1	LOS A	0.9	6.6	0.40	0.91	44.2			
6	R2	117	2.0	0.219	10.5	LOS A	0.9	6.6	0.40	0.91	44.0			
Approa	ich	176	2.0	0.219	9.7	LOS A	0.9	6.6	0.40	0.91	44.1			
North:	Broomfie	ld Street												
7	L2	98	2.0	0.062	4.6	LOS A	0.3	1.8	0.08	0.47	47.0			
8	T1	136	2.0	0.071	0.0	LOS A	0.0	0.0	0.00	0.00	50.0			
Approa	ich	234	2.0	0.071	1.9	LOS A	0.3	1.8	0.03	0.20	48.7			
All Veh	icles	584	2.0	0.219	3.9	NA	0.9	6.6	0.16	0.38	47.3			

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

 Table 4.2
 Broomfield Street & Longfield Street PM 2016

MOVEMENT SUMMARY

⁹⁰⁹Site: [BS & LS PM 2016]

New S	ite Two-W/av										
Moven	nent Pe	rformance -	Vehic	les							
Mov ID	OD Mov	Demand I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
2	T1	136	2.0	0.089	0.1	LOS A	0.2	1.3	0.10	0.09	49.2
3	R2	27	2.0	0.089	5.1	LOS A	0.2	1.3	0.10	0.09	48.2
Approa	Approach 163 2.0 0.089					NA	0.2	1.3	0.10	0.09	49.0
East: Longfield Stre		Street									
4	L2	47	2.0	0.271	8.2	LOS A	1.2	8.4	0.46	0.93	43.9
6	R2	150	2.0	0.271	11.1	LOS A	1.2	8.4	0.46	0.93	43.7
Approa	ch	197	2.0	0.271	10.4	LOS A	1.2	8.4	0.46	0.93	43.7
North: I	Broomfie	ld Street									
7	L2	171	2.0	0.108	4.6	LOS A	0.5	3.3	0.09	0.47	47.0
8	T1	152	2.0	0.079	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ch	323	2.0	0.108	2.4	LOS A	0.5	3.3	0.05	0.25	48.3
All Veh	icles	683	2.0	0.271	4.4	NA	1.2	8.4	0.18	0.41	47.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 4.3 Broomfield Street & Longfield Street AM 2031

MOVEMENT SUMMARY

⁹⁰⁹Site: [BS & LS AM 2031]

New S	ite Гwo-Wa	V)									
Moven	nent Pe	y) rformance -	Vehic	les							
Mov ID	OD Mov	Demand I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
2	T1	174	2.0	0.106	0.1	LOS A	0.2	1.2	0.08	0.07	49.4
3	R2	24	2.0	0.106	5.1	LOS A	0.2	1.2	0.08	0.07	48.4
Approach		198	2.0	0.106	0.7	NA	0.2	1.2	0.08	0.07	49.3
East: L	ongfield	Street									
4	L2	59	2.0	0.240	8.2	LOS A	1.0	7.3	0.43	0.92	44.0
6	R2	122	2.0	0.240	11.1	LOS A	1.0	7.3	0.43	0.92	43.8
Approach		181	2.0	0.240	10.2	LOS A	1.0	7.3	0.43	0.92	43.9
North:	Broomfie	eld Street									
7	L2	114	2.0	0.072	4.6	LOS A	0.3	2.1	0.08	0.47	47.0
8	T1	153	2.0	0.079	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approach		267	2.0	0.079	2.0	LOS A	0.3	2.1	0.04	0.20	48.7
All Vehicles		646	2.0	0.240	3.9	NA	1.0	7.3	0.16	0.36	47.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

 Table 4.4
 Broomfield Street & Longfield Street PM 2031

MOVEMENT SUMMARY

⁹⁰⁹Site: [BS & LS PM 2031]

New S	ite Гwo-Wa	V)									
Moven	nent Pe	rformance -	Vehic	les							
Mov ID	OD Mov	Demand I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
0.11	D (1	veh/h	%	V/C	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
2	T1	170	2.0	0.106	0.1	LOS A	0.2	1.3	0.09	0.08	49.3
3	R2	27	2.0	0.106	5.1	LOS A	0.2	1.3	0.09	0.08	48.3
Approach		197	2.0	0.106	0.8	NA	0.2	1.3	0.09	0.08	49.2
East: L	ongfield	Street									
4	L2	47	2.0	0.290	8.4	LOS A	1.3	9.3	0.49	0.96	43.5
6	R2	150	2.0	0.290	12.0	LOS A	1.3	9.3	0.49	0.96	43.4
Approach		197	2.0	0.290	11.1	LOS A	1.3	9.3	0.49	0.96	43.4
North:	Broomfie	eld Street									
7	L2	214	2.0	0.135	4.6	LOS A	0.6	4.3	0.10	0.47	47.0
8	T1	152	2.0	0.079	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approach		366	2.0	0.135	2.7	LOS A	0.6	4.3	0.06	0.28	48.2
All Vehicles		760	2.0	0.290	4.4	NA	1.3	9.3	0.18	0.40	47.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
Table 4.5 Broomfield Street & Longfield Street AM 2031 + Planning Proposal

MOVEMENT SUMMARY

⁹⁰⁹Site: [BS & LS AM 2031 + PP]

New S	ite Гwo-Way	()									
Mover	nent Per	, formance -	Vehic	les							
Mov ID	OD Mov	Demand I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	ld Street									
2	T1	206	2.0	0.123	0.1	LOS A	0.2	1.3	0.07	0.06	49.5
3	R2	24	2.0	0.123	5.2	LOS A	0.2	1.3	0.07	0.06	48.5
Approach		230	2.0	0.123	0.6	NA	0.2	1.3	0.07	0.06	49.4
East: Longfield St		Street									
4	L2	47	2.0	0.234	8.3	LOS A	1.0	6.9	0.47	0.94	43.7
6	R2	114	2.0	0.234	11.8	LOS A	1.0	6.9	0.47	0.94	43.5
Approa	ch	161	2.0	0.234	10.8	LOS A	1.0	6.9	0.47	0.94	43.6
North:	Broomfiel	d Street									
7	L2	114	2.0	0.072	4.6	LOS A	0.3	2.1	0.08	0.47	47.0
8	T1	176	2.0	0.091	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ch	290	2.0	0.091	1.8	LOS A	0.3	2.1	0.03	0.19	48.8
All Veh	icles	681	2.0	0.234	3.5	NA	1.0	6.9	0.15	0.32	47.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 4.6 Broomfield Street & Longfield Street PM 2031 + Planning Proposal

MOVEMENT SUMMARY

⁹⁰⁹Site: [BS & LS PM 2031 + PP]

New S	ite	、									
Stop (Iwo-Way	y)									
Mover	nent Pe	rformance -	Vehic	les							
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
2	T1	217	2.0	0.131	0.1	LOS A	0.2	1.4	0.08	0.06	49.4
3	R2	27	2.0	0.131	5.2	LOS A	0.2	1.4	0.08	0.06	48.4
Approa	ich	244	2.0	0.131	0.7	NA	0.2	1.4	0.08	0.06	49.3
East: L	ongfield	Street									
4	L2	34	2.0	0.282	8.6	LOS A	1.2	8.9	0.54	0.98	43.0
6	R2	134	2.0	0.282	13.1	LOS A	1.2	8.9	0.54	0.98	42.9
Approa	ich	168	2.0	0.282	12.2	LOS A	1.2	8.9	0.54	0.98	42.9
North:	Broomfie	ld Street									
7	L2	214	2.0	0.135	4.6	LOS A	0.6	4.3	0.10	0.47	47.0
8	T1	184	2.0	0.096	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ich	398	2.0	0.135	2.5	LOS A	0.6	4.3	0.05	0.25	48.3
All Veh	icles	810	2.0	0.282	4.0	NA	1.2	8.9	0.16	0.35	47.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 4.7 Broomfield Street & Longfield Street AM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

⁹⁹⁹Site: [BS & LS AM 2031 + ALL]

New S	ite	V)									
Mover	nent Pe	y) rformance -	Vehic	les							
Mov ID	OD Mov	Demand I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate_	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
2	T1	229	2.0	0.136	0.1	LOS A	0.2	1.3	0.07	0.06	49.5
3	R2	25	2.0	0.136	5.2	LOS A	0.2	1.3	0.07	0.06	48.5
Approa	ch	254	2.0	0.136	0.6	NA	0.2	1.3	0.07	0.06	49.4
East: L	ongfield	Street									
4	L2	47	2.0	0.266	8.4	LOS A	1.1	8.0	0.50	0.96	43.5
6	R2	127	2.0	0.266	12.3	LOS A	1.1	8.0	0.50	0.96	43.3
Approa	ch	174	2.0	0.266	11.3	LOS A	1.1	8.0	0.50	0.96	43.3
North:	Broomfie	eld Street									
7	L2	119	2.0	0.075	4.6	LOS A	0.3	2.2	0.09	0.47	47.0
8	T1	179	2.0	0.093	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ch	298	2.0	0.093	1.8	LOS A	0.3	2.2	0.03	0.19	48.7
All Veh	icles	726	2.0	0.266	3.7	NA	1.1	8.0	0.16	0.33	47.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 4.8 Broomfield Street & Longfield Street PM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

⁹⁹⁹Site: [BS & LS PM 2031 + ALL]

New S	ite)									
Stop (iwo-wa	y)		-							
Mover	nent Pe	rformance -	Vehic	les							
Mov	OD	Demand F	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
2	T1	223	2.0	0.135	0.1	LOS A	0.2	1.5	0.08	0.06	49.4
3	R2	27	2.0	0.135	5.3	LOS A	0.2	1.5	0.08	0.06	48.4
Approa	ch	250	2.0	0.135	0.7	NA	0.2	1.5	0.08	0.06	49.3
East: L	ongfield	Street									
4	L2	34	2.0	0.296	8.9	LOS A	1.3	9.5	0.56	0.99	42.8
6	R2	134	2.0	0.296	13.8	LOS A	1.3	9.5	0.56	0.99	42.6
Approa	ch	168	2.0	0.296	12.8	LOS A	1.3	9.5	0.56	0.99	42.6
North:	Broomfie	ld Street									
7	L2	231	2.0	0.146	4.6	LOS A	0.7	4.6	0.10	0.47	47.0
8	T1	204	2.0	0.106	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ch	435	2.0	0.146	2.4	LOS A	0.7	4.6	0.05	0.25	48.3
All Veh	icles	853	2.0	0.296	4.0	NA	1.3	9.5	0.16	0.34	47.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

5 Broomfield Street & Bareena Avenue

Table 5.1 Broomfield Street & Bareena Avenue AM 2016

MOVEMENT SUMMARY

₩Site: 101 [BS + BA AM 2016]

New Site Roundabout

Round	about										
Move	ment Pei	rformance -	Vehic	les							
Mov ID	OD Mov	Demand F Total	lows= HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	ld Street									
1	L2	298	1.0	0.385	7.3	LOS A	2.5	17.7	0.73	0.78	44.9
3	R2	9	1.0	0.385	10.8	LOS A	2.5	17.7	0.73	0.78	45.6
3u	U	1	1.0	0.385	12.4	LOS A	2.5	17.7	0.73	0.78	46.1
Approa	ach	308	1.0	0.385	7.4	LOS A	2.5	17.7	0.73	0.78	44.9
East: E	Bareena A	venue									
4	L2	18	1.0	0.393	6.9	LOS A	2.4	17.4	0.66	0.71	45.2
5	T1	324	3.0	0.393	6.9	LOS A	2.4	17.4	0.66	0.71	46.0
6u	U	1	1.0	0.393	12.0	LOS A	2.4	17.4	0.66	0.71	46.4
Approa	ach	343	2.9	0.393	7.0	LOS A	2.4	17.4	0.66	0.71	45.9
West:	Bareena /	Avenue									
11	T1	342	3.0	0.202	3.5	LOS A	1.4	9.8	0.08	0.38	47.8
12	R2	264	1.0	0.270	7.0	LOS A	2.0	14.0	0.09	0.62	45.4
12u	U	200	1.0	0.270	8.5	LOS A	2.0	14.0	0.09	0.62	45.9
Approa	ach	806	1.8	0.270	5.9	LOS A	2.0	14.0	0.09	0.52	46.5
All Veh	nicles	1457	1.9	0.393	6.5	LOS A	2.5	17.7	0.36	0.62	46.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 5.2 Broomfield Street & Bareena Avenue PM 2016

MOVEMENT SUMMARY

₩ Site: 101 [BS + BA PM 2016]

New S Round	Site Jabout										
Move	ment Per	rformance -	Vehic	les							
Mov ID	OD Mov	Demand F Total	lows= HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate_	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	ld Street									
1	L2	352	1.0	0.504	9.3	LOS A	4.1	28.9	0.84	0.92	43.8
3	R2	12	1.0	0.504	12.8	LOS A	4.1	28.9	0.84	0.92	44.5
3u	U	1	1.0	0.504	14.4	LOS A	4.1	28.9	0.84	0.92	45.0
Approa	ach	365	1.0	0.504	9.4	LOS A	4.1	28.9	0.84	0.92	43.9
East: E	Bareena A	venue									
4	L2	15	1.0	0.570	8.5	LOS A	4.8	34.7	0.75	0.83	44.4
5	T1	490	3.0	0.570	8.5	LOS A	4.8	34.7	0.75	0.83	45.1
6u	U	1	1.0	0.570	13.5	LOS A	4.8	34.7	0.75	0.83	45.5
Approa	ach	506	2.9	0.570	8.5	LOS A	4.8	34.7	0.75	0.83	45.1
West:	Bareena /	Avenue									
11	T1	491	3.0	0.290	3.5	LOS A	2.3	16.2	0.11	0.38	47.8
12	R2	344	1.0	0.259	7.0	LOS A	1.9	13.7	0.11	0.60	45.5
12u	U	95	1.0	0.259	8.5	LOS A	1.9	13.7	0.11	0.60	46.1
Approa	ach	930	2.1	0.290	5.3	LOS A	2.3	16.2	0.11	0.49	46.7
All Ver	nicles	1801	2.1	0.570	7.0	LOS A	4.8	34.7	0.44	0.67	45.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 5.3 Broomfield Street & Bareena Avenue AM 2031

MOVEMENT SUMMARY

₩ Site: 101 [BS + BA AM 2031]

New S Round	ite labout										
Mover	nent Pe	rformance -	Vehic	les							
Mov ID	OD Mov	Demand F Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate_	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
1	L2	351	1.0	0.498	9.7	LOS A	4.0	28.0	0.83	0.93	43.6
3	R2	10	1.0	0.498	13.2	LOS A	4.0	28.0	0.83	0.93	44.3
3u	U	1	1.0	0.498	14.7	LOS B	4.0	28.0	0.83	0.93	44.8
Approach		362	1.0	0.498	9.8	LOS A	4.0	28.0	0.83	0.93	43.7
East: E	Bareena A	Avenue									
4	L2	21	1.0	0.483	8.2	LOS A	3.5	25.0	0.73	0.81	44.5
5	T1	382	3.0	0.483	8.3	LOS A	3.5	25.0	0.73	0.81	45.2
6u	U	1	1.0	0.483	13.3	LOS A	3.5	25.0	0.73	0.81	45.7
Approa	ich	404	2.9	0.483	8.3	LOS A	3.5	25.0	0.73	0.81	45.2
West:	Bareena	Avenue									
11	T1	363	3.0	0.215	3.5	LOS A	1.5	11.0	0.09	0.38	47.8
12	R2	280	1.0	0.301	7.0	LOS A	2.4	16.7	0.10	0.61	45.3
12u	U	236	1.0	0.301	8.5	LOS A	2.4	16.7	0.10	0.61	45.9
Approa	ich	879	1.8	0.301	5.9	LOS A	2.4	16.7	0.10	0.52	46.5
All Veh	icles	1645	1.9	0.498	7.4	LOS A	4.0	28.0	0.41	0.68	45.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 5.4 Broomfield Street & Bareena Avenue PM 2031

MOVEMENT SUMMARY

₩ Site: 101 [BS + BA PM 2031]

New S	Site Jabout										
Move	ment Pe	rformance -	Vehic	les							
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	-	veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	eld Street									
1	L2	409	1.0	0.644	13.4	LOS A	6.7	47.0	0.95	1.11	41.8
3	R2	13	1.0	0.644	16.9	LOS B	6.7	47.0	0.95	1.11	42.3
3u	U	1	1.0	0.644	18.4	LOS B	6.7	47.0	0.95	1.11	42.8
Approa	ach	423	1.0	0.644	13.5	LOS A	6.7	47.0	0.95	1.11	41.8
East: E	Bareena A	Avenue									
4	L2	17	1.0	0.665	10.9	LOS A	7.0	50.2	0.84	0.97	43.1
5	T1	552	3.0	0.665	11.0	LOS A	7.0	50.2	0.84	0.97	43.8
6u	U	1	1.0	0.665	15.9	LOS B	7.0	50.2	0.84	0.97	44.2
Approa	ach	570	2.9	0.665	11.0	LOS A	7.0	50.2	0.84	0.97	43.8
West:	Bareena	Avenue									
11	T1	537	3.0	0.318	3.5	LOS A	2.6	18.9	0.12	0.38	47.7
12	R2	376	1.0	0.285	7.0	LOS A	2.3	16.1	0.12	0.60	45.5
12u	U	107	1.0	0.285	8.6	LOS A	2.3	16.1	0.12	0.60	46.0
Approa	ach	1020	2.1	0.318	5.3	LOS A	2.6	18.9	0.12	0.48	46.7
All Veh	nicles	2013	2.1	0.665	8.6	LOS A	7.0	50.2	0.50	0.75	44.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 5.5 Broomfield Street & Bareena Avenue AM 2031 + Planning Proposal

MOVEMENT SUMMARY

₩ Site: 101 [BS + BA AM 2031 + PP]

New S	Site										
Round	dabout										
Move	ment Pei	rformance -	Vehic	les							
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	_	veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	ld Street									
1	L2	374	1.0	0.531	10.3	LOS A	4.5	31.5	0.85	0.96	43.4
3	R2	10	1.0	0.531	13.7	LOS A	4.5	31.5	0.85	0.96	44.0
3u	U	1	1.0	0.531	15.3	LOS B	4.5	31.5	0.85	0.96	44.5
Approa	ach	385	1.0	0.531	10.4	LOS A	4.5	31.5	0.85	0.96	43.4
East: E	Bareena A	venue									
4	L2	22	1.0	0.493	8.7	LOS A	3.6	26.2	0.75	0.83	44.3
5	T1	382	3.0	0.493	8.7	LOS A	3.6	26.2	0.75	0.83	45.0
6u	U	1	1.0	0.493	13.7	LOS A	3.6	26.2	0.75	0.83	45.4
Approa	ach	405	2.9	0.493	8.7	LOS A	3.6	26.2	0.75	0.83	45.0
West:	Bareena /	Avenue									
11	T1	363	3.0	0.215	3.5	LOS A	1.5	11.0	0.09	0.38	47.8
12	R2	303	1.0	0.314	7.0	LOS A	2.5	17.7	0.10	0.61	45.4
12u	U	236	1.0	0.314	8.5	LOS A	2.5	17.7	0.10	0.61	45.9
Approa	ach	902	1.8	0.314	6.0	LOS A	2.5	17.7	0.10	0.52	46.5
All Veh	nicles	1692	1.9	0.531	7.6	LOS A	4.5	31.5	0.42	0.69	45.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 5.6 Broomfield Street & Bareena Avenue PM 2031 + Planning Proposal

MOVEMENT SUMMARY

₩ Site: 101 [BS + BA PM 2031 + PP]

New S	Site										
Round	labout										
Move	ment Pe	rformance -	Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	ld Street									
1	L2	440	1.0	0.695	15.0	LOS B	7.9	55.7	0.98	1.17	41.0
3	R2	13	1.0	0.695	18.5	LOS B	7.9	55.7	0.98	1.17	41.6
3u	U	1	1.0	0.695	20.0	LOS B	7.9	55.7	0.98	1.17	42.0
Approa	ach	454	1.0	0.695	15.1	LOS B	7.9	55.7	0.98	1.17	41.0
East: E	Bareena A	venue									
4	L2	19	1.0	0.685	11.9	LOS A	7.6	54.2	0.86	1.02	42.6
5	T1	552	3.0	0.685	12.0	LOS A	7.6	54.2	0.86	1.02	43.3
6u	U	1	1.0	0.685	17.0	LOS B	7.6	54.2	0.86	1.02	43.7
Approa	ach	572	2.9	0.685	12.0	LOS A	7.6	54.2	0.86	1.02	43.2
West:	Bareena	Avenue									
11	T1	537	3.0	0.318	3.5	LOS A	2.7	19.1	0.12	0.38	47.7
12	R2	407	1.0	0.303	7.0	LOS A	2.5	17.6	0.12	0.60	45.5
12u	U	107	1.0	0.303	8.6	LOS A	2.5	17.6	0.12	0.60	46.0
Approa	ach	1051	2.0	0.318	5.4	LOS A	2.7	19.1	0.12	0.49	46.7
All Veł	nicles	2077	2.0	0.695	9.3	LOS A	7.9	55.7	0.51	0.78	44.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 5.7 Broomfield Street & Bareena Avenue AM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

₩ Site: 101 [BS + BA AM 2031 + ALL]

New S	Site										
Round	labout										
Move	ment Pei	rformance -	Vehic	les							
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	_	veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	ld Street									
1	L2	424	1.0	0.601	11.6	LOS A	5.7	40.2	0.89	1.02	42.7
3	R2	10	1.0	0.601	15.1	LOS B	5.7	40.2	0.89	1.02	43.3
3u	U	1	1.0	0.601	16.7	LOS B	5.7	40.2	0.89	1.02	43.7
Approa	ach	435	1.0	0.601	11.7	LOS A	5.7	40.2	0.89	1.02	42.7
East: E	Bareena A	venue									
4	L2	22	1.0	0.497	8.8	LOS A	3.7	26.7	0.76	0.84	44.2
5	T1	382	3.0	0.497	8.9	LOS A	3.7	26.7	0.76	0.84	44.9
6u	U	1	1.0	0.497	13.9	LOS A	3.7	26.7	0.76	0.84	45.3
Approa	ach	405	2.9	0.497	8.9	LOS A	3.7	26.7	0.76	0.84	44.9
West:	Bareena /	Avenue									
11	T1	363	3.0	0.215	3.5	LOS A	1.6	11.1	0.09	0.38	47.8
12	R2	313	1.0	0.319	7.0	LOS A	2.6	18.4	0.11	0.61	45.4
12u	U	236	1.0	0.319	8.5	LOS A	2.6	18.4	0.11	0.61	45.9
Approa	ach	912	1.8	0.319	6.0	LOS A	2.6	18.4	0.10	0.52	46.4
All Veh	nicles	1752	1.9	0.601	8.1	LOS A	5.7	40.2	0.45	0.72	45.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Table 5.8 Broomfield Street & Bareena Avenue PM 2031 + Planning Proposal + All Precincts

MOVEMENT SUMMARY

₩ Site: 101 [BS + BA PM 2031 + ALL]

New S	Site										
Round	dabout										
Move	ment Pei	rformance -	Vehic	cles							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Broomfie	ld Street									
1	L2	448	1.0	0.713	15.7	LOS B	8.4	59.3	0.99	1.20	40.7
3	R2	14	1.0	0.713	19.2	LOS B	8.4	59.3	0.99	1.20	41.3
3u	U	1	1.0	0.713	20.7	LOS B	8.4	59.3	0.99	1.20	41.7
Approa	ach	463	1.0	0.713	15.8	LOS B	8.4	59.3	0.99	1.20	40.7
East: I	Bareena A	venue									
4	L2	19	1.0	0.708	13.4	LOS A	8.3	59.4	0.89	1.09	41.9
5	T1	552	3.0	0.708	13.4	LOS A	8.3	59.4	0.89	1.09	42.5
6u	U	1	1.0	0.708	18.4	LOS B	8.3	59.4	0.89	1.09	42.9
Approa	ach	572	2.9	0.708	13.4	LOS A	8.3	59.4	0.89	1.09	42.5
West:	Bareena /	Avenue									
11	T1	537	3.0	0.319	3.5	LOS A	2.7	19.2	0.13	0.38	47.7
12	R2	448	1.0	0.327	7.0	LOS A	2.8	19.6	0.13	0.59	45.5
12u	U	107	1.0	0.327	8.6	LOS A	2.8	19.6	0.13	0.59	46.0
Approa	ach	1092	2.0	0.327	5.4	LOS A	2.8	19.6	0.13	0.49	46.6
All Vel	nicles	2127	2.0	0.713	9.8	LOS A	8.4	59.4	0.52	0.80	44.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).